TEKNIK BIOREMEDIASI: KEUNTUNGAN, KETERBATASAN DAN PROSPEK RISET
Abstract
Bioremediasi merupakan teknik biologi yang digunakan untuk menyisihkan atau
menghilangkan polutan dari lingkungan dengan menggunakan agen biologi seperti bakteri, cendawan, alga dan tanaman. Bioremediasi dikenal sebagai teknik yang relatif ekonomis dan ramah lingkungan dibandingkan teknik lain seperti fisika dan kimia. Teknik bioremediasi telah banyak diterapkan secara luas di berbagai negara. Beberapa penelitian membuktikan kemampuan teknik ini dalam mendegrasi berbagai kontaminan. Namun sangat disayangkan informasi tentang prinsip, teknik, keuntungan dan keterbatasan dari teknik-teknik bioremediasi masih terbatas. Makalah ini bertujuan untuk mereview tentang teknik-teknik, keuntungan dan keterbatasan, serta kemungkinan prospek riset yang bisa dilakukan dari teknik-teknik bioremediasi. Teknik bioremediasi yang dipaparkan dalam makalah ini adalah teknik in situ (Natural attenuation, fitoremediasi, bioventing, bioaugmentasi dan biosparging) dan eks-situ (bioreaktor, landfarming dan vermicomposting). Pemilihan teknik bioremediasi yang tepat untuk setiap kasus tergantung pada banyak faktor seperti jenis dan konsentrasi kontaminan atau polutan, sifat situs terkontaminasi, ambang batas konsentrasi yang diatur, waktu yang tersedia untuk melakukan remediasi, biaya dan urgensitas yang diperlukan. Tidak semua teknik bioremediasi cocok untuk semua kasus dan dapat dikatakan yang terbaik. Masing-masing teknik punya kelebihan dan keterbatasan masing-masing. Teknik bioremediasi eks situ cenderung lebih mahal karena biaya tambahan yang dikaitkan dengan penggalian dan transportasi. Meskipun demikian, teknik ini dapat digunakan untuk mentreatmen berbagai polutan secara terkendali. Sebaliknya, teknik in situ dinilai lebih ekonomis karena tidak dibutuhkan biaya tambahan untuk penggalian; namun, biaya pemasangan peralatan di tempat, ditambah dengan ketidakmampuan untuk memvisualisasikan dan mengontrol situs yang tercemar dapat menyebabkan beberapa teknik bioremediasi in situ tidak efisien.
Full Text:
PDFReferences
Aalok A, Tripathi AK, Soni P. 2008. Vermicomposting: a better option for organic solid waste management. J. Hum. Ecol. 24, 59e64. https://doi.org/10.1080/ 09709274.2008.11906100
Azubuike CC, Chikere CB, Okpokwasii GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 32:180. DOI 10.1007/s11274-016-2137-x.
Ayotamuno JM. and Kogbara RB. 2007. Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. African Journal of Biotechnology 6: 1332-1337.
Cheng J. 2014. Bioremediation of Contaminated Water-Based on Various Technologies. DOI: 10.4236/oalib.preprints.1200056.
Dhakal S. 2014. Vermiculture technique and advantages. https://www.slideshare.net/sabindhakal956/vermiculture-techniques-and-advantages. Diakses tanggal 29 Mei 2020.
Dushenkov V, Nanda Kumar PBA, Motto H, Raskin I. 1995. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology 29:1239-1245.
U.S. Environmental Protection Agency (EPA). How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. (EPA 510-B-95-007). https://www.epa.gov/ust
Folch A, Vilaplana M, Amado L, Vicent R, Caminal G. 2013. Fungalmpermeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560. doi:10.1016/j. jhazmat.2013.09.004
Frascari D, Zanaroli G, Danko AS. 2015. In situ aerobiccometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399. doi:10.1016/j.jhazmat.2014.09.041
Frerot H, Lefebvre C, Gruber W, Collin C, Dos Santos A, Escarre J. 2006. Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil 282: 53-65.
Frutos FJG, Pe´rez R, Escolano O, Rubio A, Gimeno A, Fernandez MD, Carbonell G, Perucha C, Laguna J. 2012. Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies. J Hazard Mater 199:262–271. doi:10.1016/j.jhazmat.2011.11.017.
Frutos FJG, Escolano O, Garcia S, Babin M, Fernandez MM. 2010. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. Journal of Hazardous Materials. 183 : 806–813.
Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones EW, Rennels D, Wolfet NL. 2000.
Phytodegradation of p, p’ - DDT and the enantiomers of o, p’ – DDT. Environmental Science and Technology. 34: 1663-1670.
Goswani M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S, Tribedi P. 2018.
Bioaugmentation and biostimulation: a potential strategy for environmental remediation. Journal of Microbiology & Experimentation. 6(5) : 223-231.
He X, Zhang Y, Shen M, Zeng G, Zhou M, Li M. 2016. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials. Bioresour. Technol. 218 : 867–873. DOI: 10.1016/j.biortech. 2016.07.045.
Ho¨hener P, Ponsin V. 2014. In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7. doi:10.1016/j.copbio.2013.08.018.
Hua L, Wu W, Liu Y, Chen Y, McBride MB. 2008. Effect of composting on polycyclic aromatic hydrocarbon removal in sewage sludge. Water. Air. Soil Pollut. 193: 259–267. DOI: 10.1007/s11270-008-9687-y
Kao CM, Chen CY, Chen SC, Chien HY, Chen YL .2008. Application of in situ biosparging to remediate a petroleumhydrocarbon spill site: field and microbial evaluation. Chemosphere
:1492–1499. doi:10.1016/j.chemosphere.2007.08.029.
Karmegam N, Vijayan P, Prakash M, Paul JAJ. 2019. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production . 228 : 718-728.
Kaczorek E, Sałek K, Guzik U, Jesionowski T, Cybulski Z. 2013. Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri. Chemosphere. 90(2):471-478. doi:10.1016/j.chemosphere.2012.07.065
Khan FI, Husain T, Hejazi R. 2004. An overview and analysis of site remediation technologies. J Environ Manag 71:95–122. doi:10. 1016/j.jenvman.2004.02.003.
Lee JH. 2013. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439. doi:10.1007/s12257013-0193-
Lee G, Suonan Z, Kim S.H, Hwang D.W, Lee K.S. 2019. Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in the polluted bay systems. Marine Pollution Bulletin 149 (2019) 110509.
Lukic B, Antonio Panico, David Huguenot, Massimiliano Fabbricino, Eric D. van Hullebusch & Giovanni Esposito. 2017. A review on the efficiency of landfarming integrated with composting as a soil remediation treatment, Environmental Technology Reviews, 6:1, 94 - 116, DOI: 10.1080/21622515.2017.1310310
Macek T, Mackova M, Kas J. 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances. 18: 23-34.
Maila MP & Cloete TE. 2004. Bioremediation of petroleum hydrocarbons through landfarming:
are simplicity and costeffectiveness the only advantages? Rev Environ Sci Biotechnol. 3(4):349–360.
Marsya DP, Firdaus A, dan Zulkifliani. 2013. Bioremediasi tanah yang terkontaminasi minyak bumi dengan metode bioventing terhadap penurunan kadar totl Petroleum Hydrocarbon dan BTEX. Universitas Indonesia. 1-20.
Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ. 2004. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116:39–48. doi:10.1016/j.jhazmat.2004. 05.037.
Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N . 2013. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44. doi:10.1016/j.marpolbul.2013.10.038.
Nzila A, Razzak SA, Zhu J, 2016. Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge. Int. J. Environ. Res. Public Health. 13 (846) . 20 hal. doi:10.3390/ijerph13090846
Nugroho A. 2006. Biodegradasi sludge minyak bumi dalam skala mikrokosmos: simulasi sederhana sebagai kajian bioremediasi land treatment. Makara Teknologi. 10 (2) : 82-89.
Papadopoulos S, Vatseris C. 2005. Air Sparging for Site Remediation Intergeo- Environmental
Technology Ltd. Heleco ’05, Τεε, Αθήνa: 1 11http://library.tee.gr/digital/m2045/m2045_papadopoulos1.pdf . Diunduh tanggal 20 Mei 2020.
Paudyn K, Rutter A, Rowe RK, Poland JS. 2008. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114. doi:10.1016/j. coldregions.2007.07.006.
Paul CJ, Richard LJ, Cristin LB, Andrea L. 2001. Advances in In Situ Air Sparging/ Biosparging. Bioremediation Journal 5 (4): 251-266.
Philp JC & Atlas RM. 2005. Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, pp 139–236
Prescott LM, Harley JP, Klein DA. 2002. Microbiology, 5th Edition, McGraw-Hill, New York. 1014pp
Prokop G, Schamann M, Edelgaard I. 2000. Management of contaminated sites in western
Europe. European Environment Agency, Copenhagen. Rahayu. 2005. BULLETIN PENELITIAN VOL. 27 NO. 2 .
Raskin I& Ensley BD. 2000. Phytoremediation of Toxic Metals: Using Plants to Clean Up The Environment, Wiley, New York.
Roy M, Giri AK, Dutta S, Mukherjee P. 2015. Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198. doi:10.1016/j.envint.2014.11.010.
Silva PRD, Cotta JAO, Maria DL & Maria OO. 2019. The application of the vermicomposting process in the bioremediation of diesel contaminated soils, Journal of Environmental Science and Health, Part B, DOI: 10.1080/03601234.2019.1611303.
Silva-Castro GA, Uad I, Rodrı´guez-Calvo A, Gonza´lez-Lo´pez J, Calvo C. 2015. Response of autochthonous microbiota of diesel polluted soils to land- farming treatments. Environ Res 137:49–58. doi:10.1016/j.envres.2014.11.009.
Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M. 2015. Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegradation 101:56–65. doi:10.1016/j.ibiod.2015.03.029
Tiwari JT, Ankit, Sweta, Kumar S, Korstad J, Bauddh K. 2019. Ecorestoration of Polluted Aquatic Ecosystems Through Rhizofiltration. DOI: https://doi.org/10.1016/B978-0-12- 813912-7.00005-3
U.S. EPA. 1999. Phytoremediation Resource Guide. EPA/542/B-99/003, available online http://www.epa.gov/tio.
U.S. EPA.2000. Introduction to Phytoremediation. EPA/600/R-99/107 .
Vazquez S, Agha A, Granado A, Sarro M, Esteban E, Penalosa J, Carpena R. 2006. Use of white Lupin plant for phytostabilization of Cd and As polluted acid soil. Water, Air and Soil Pollution 177: 349-365.
Volpe A, D’Arpa S, Del Moro G, Rossetti S, Tandoi V, Uricchio VF . 2012. Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water Air Soil Pollut 223:1773– 1782. doi:10.1007/s11270-011-0982-7.
Wafler . 2016. Composting and vermicomposting. Suitanable sanitation and water management(SSSWM). https://slideplayer.com/slide/6315861/. Diakses tanggal 29 Mei 2020.
Xiao M & Richard G. Zytner . 2019. The effect of age on petroleum hydrocarbon contaminants in soil for bioventing remediation, Bioremediation Journal, DOI: 10.1080/10889868.2019.1671306.
Zhuang P, Yang QW, Wang HB, Shu WS, 2007. Phytoextraction of heavy metals by eight plant species in the field. Water, Air and Soil Pollution 184: 235-242.
Zhu X, Venosa A.D, Suindan MT, Lee K. 2001. Guidelines for the bioremediation of marine shorelines and freshwater wetlands. U.S.
DOI: http://dx.doi.org/10.22373/pbio.v8i2.9650
DOI (PDF): http://dx.doi.org/10.22373/pbio.v8i1.9650.g5433
Refbacks
- There are currently no refbacks.
ISSN : 2828-1675
Email : official.semnasbiotik@gmail.com
Prosiding Seminar Nasional Biotik : is licensed under a Creative Commons Attribution 4.0 International License / CC BY-SA 4.0