ORGANOLEPTIC TESTS OF PEMPEK WITH VARIOUS SURIMI FORMULATIONS OF SANGKURIANG CATFISH (Clarias gariepinus)

Idealistuti Idealistuti, Suyatno, Mutatauwi’ah and Nico Syahputra Sebayang*

Food Technology Departement, Faculty of Agriculture, Muhammadiyah University of Palembang, Palembang, Indonesia

Email: idealistuti@gmail.com

DOI: 10.22373/biotik.v11i1.15688

ABSTRACT

This study aims to study various surimi formulations of Sangkuriang catfish (Clarias gariepinus) for the resulting pempek, using the experimental method using a Randomized Block Design (RBD) arranged in a non-factorial manner with one treatment of various formulations of surimi Sangkuriang catfish (Clarias gariepinus) consisting of six factors and repeated four times. Pempek organoleptic test results with hedonic tests on color, aroma, and taste. The highest
preference value for the color of pempek made from Sangkuriang catfish surimi in the L1 treatment (0.25 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with a clean white pempek color typical of fish pempek with an average value of 4.30 (criterion panelists liked). The highest preference value for the taste and aroma of pempek made from sangkuriang catfish surimi was found in treatment L6 (1.50 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with a savory taste and dominant pempek aroma with an average value of 3.90 (panelists preferred criteria) and 4.30 (panelists preferred criteria).

Keyword: Pempek, Sangkuriang catfish, Surimi.

INTRODUCTION
One of the most abundant freshwater fish commodities in Indonesia is the Sangkuriang catfish (Clarias gariepinus) and have big potencies and opportunities to be developed [1]. Sangkuriang catfish (Clarias gariepinus) has the potential to become raw material for surimi, considering that the raw material for surimi from seawater fish has begun to decrease [2]. Fish protein is very special because it functions as an addition to the amount of protein consumed and as a complement to the quality of protein in the menu, including omega-3 fatty acids, carnitine, selenium, vitamin D, taurine and iodine [3].

Surimi is a semi-wet product (fish protein concentrate) produced by washing fish meat repeatedly to obtain salt-soluble protein in the form of myofibrils [4]. Washing fish meat aims to dissolve various water-soluble components, such as sarcoplasmic protein, blood, enzymes [5]. Surimi is used as a basic raw material in the manufacture of sausages, otak-otak, pempek, fish nuggets, fish balls [6]. The advantage of using surimi when compared to fresh fish is that it can maintain uniform quality, speed up processing and facilitate storage of raw materials [7].

Pempek is one of the foods made from vegetables and animals. Reference [8] stated that pempek is a typical food of Palembang, South Sumatra, which has been known since the days of the Sriwijaya kingdom until now. Pempek is made from a mixture of several basic ingredients such as fish meat (filet),
tapioca flour, water, salt and spices to enhance the taste [9,10].

Tapioca flour is often used as a raw material for making food, such as crackers, pempek, or often used as a substitute for wheat flour to process food ingredients [11]. The amylose content of tapioca flour is around 18.6-23.6% with a spherical granule shape and the starch gelatinization temperature reaches 62°C [12]. These characteristics are very suitable for use as raw materials for making crackers and pempek. Tapioca flour with high viscosity and does not experience retrogradation [13] will produce pempek with a stable texture when pempek is cooled. Tapioca flour is used in the food industry because of its starch content and nature which easily expands in hot water and can form the desired thickness [14].

The quality of the pempek produced is determined by the type and amount of fish and tapioca flour used [9]. The more fish added, the higher the pempek protein produced [15]. To obtain a good quality Pempek surimi catfish (Clarias gariepinus) Sangkuriang catfish (Clarias gariepinus) and liked by consumers, the process of making pempek must be considered, one of which is the ratio of surimi catfish Sangkuriang (Clarias gariepinus) and tapioca flour to get pempek surimi catfish sangkuriang (Clarias gariepinus) with good quality chemical and physical characteristics.

RESEARCH METHOD

Place and Time

This research was carried out in the laboratory of the Faculty of Agriculture, Muhammadiyah University of Palembang and the laboratory of Sriwijaya University Palembang from September 2018 to March 2019.

Materials and Tools

The materials used in this study were sangkuriang catfish (Clarias gariepinus), sucrose/granulated sugar, sodium triphosphate (STPP), salt, bulk ice, clean water, tapioca flour, and pempek lenjer for sensory testing.

While the tools used are plastic basins, stainless steel knives, cutting boards, digital scales, filter cloth, fish grinding tools, filters, stirrers, thermometers, paper plates, and label paper for sensory tests.
Method

This study used an experimental method with a randomized block design (RBD) arranged in a non-factorial manner with one treatment of various formulations of Sangkuriang catfish surimi consisting of six factors and repeated four times. The treatment used in this study is as follows:

L₁ = Surimi 0.25 parts and tapioca flour 1.00 parts.
L₂ = Surimi 0.50 parts and tapioca flour 1.00 parts.
L₃ = Surimi 0.75 parts and tapioca flour 1.00 parts.
L₄ = Surimi 1.00 parts and tapioca flour 1.00 parts.
L₅ = Surimi 1.25 parts and tapioca flour 1.00 parts.
L₆ = Surimi 1.50 parts and tapioca flour 1.00 parts.

RESULTS AND DISCUSSION

Color

Based on the results of the Conover test, the L₁ treatment was significantly different from the L₃, L₂, L₄, L₅ and L₆ treatments. The L₃ treatment was not significantly different from the L₂, L₄, L₅ and L₆ treatments. The L₂ treatment was not significantly different from the L₄, L₅ and L₆ treatments. The L₄ treatment was not significantly different from the L₅ and L₆ treatments and the L₅ treatment was not significantly different from the L₆ treatment.

The highest preference value for the color of pempek made from sangkuriang catfish surimi was found in the L₁ treatment (0.25 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with a clean white pempek color typical of fish pempek with an average value of 4.30 (panelists preferred criteria) and lowest in treatment L₆ (1.50 parts sangkuriang catfish surimi and 1.00 parts tapioca flour) with a slightly cloudy white color with an average value of 3.55 (panelists preferred criteria).

L₁ treatment with the lowest surimi ratio resulted in the largest value for the color of the pempek produced. Protein derived from sangkuriang catfish surimi can affect the intensity of the white color in the resulting pempek. Reducing the amount of surimi used can reduce the amount of myoglobin in the material and produce fish pempek with a whiter color in the L₁ treatment, so that the L₁ treatment produces a color that is preferred by the panelists compared to other treatments.
Tapioca flour as a raw material for making pempek can also affect the color of the resulting pempek. The use of a larger amount than the other treatments resulted in a whiter pempek color in the L₁ treatment than the other treatments. Other treatments with a higher ratio of surimi (treatments L₂, L₃, L₄, L₅ and L₆) will decrease the white color intensity due to an increase in the amount of myoglobin protein in the material and this can reduce the value of the panelist's preference level for the resulting pempek color.

White fish meat has a low myoglobin content resulting in a brighter product color. Meanwhile, the color of red fish meat is due to the fact that the meat contains high myoglobin which dominates the color of the product, making it darker or not lighter[16]. According to the reference [17], the nutritional composition of starch in tapioca flour can function to reduce textural damage and be used as a white coloring agent in pempek. Different types of fish produce different colors of pempek.

Aroma

Based on the results of the Conover test, the L₆ treatment was significantly different from the L₅, L₄ and L₃, L₂ and L₁ treatments. The L₅ treatment was not significantly different from the L₄ and L₃ treatments, but significantly different from the L₂ and L₁ treatments. The L₄ treatment was not significantly different from the L₃ and L₂ treatments, but significantly different from the L₁ treatment. The L₃ treatment was not significantly different from the L₂ treatment, but significantly different from the L₁ treatment and the L₂ treatment was significantly different from L₁.

The highest preference value for the aroma of pempek made from sangkuriang catfish surimi was found in treatment L₆ (1.50 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with a distinctive aroma of fish pempek with an average value of 4.30 (preferred criteria panelists) and the lowest was in the L₁ treatment (0.25 parts sangkuriang catfish surimi and 1.00 parts tapioca flour) with a distinctive aroma of tapioca flour which was more dominant with an average value of 3.15 (panelists preferred criteria).

The L₆ treatment with the highest surimi ratio resulted in the greatest value for the aroma of the
pempek produced. An increase in the amount of surimi can increase the fat content of the ingredients and during the processing the fat will interact with other ingredients (salt, carbohydrates and protein) to produce a distinctive aroma of fresh water fish pempek which is not fishy in the L6 treatment, so that the L6 treatment produces a preferred aroma the panelists compared to other treatments.

Another treatment with a lower surimi ratio (treatments L1, L2, L3, L4 and L5) would decrease the intensity of the typical pempek aroma of freshwater fish and be replaced with the typical aroma of tapioca starch which could reduce the panelist's preference level for the aroma of the resulting pempek.

Differences in the type and composition of fat cause differences in the flavor of meat from different animals when the meat is cooked [18]. Types of freshwater fish with a low fat content have a lower fishy aroma character than seawater fish species which have a relatively higher fat content and a higher fishy aroma.[19].

In addition, the addition of spices can also improve the unwanted aroma of a food ingredient. The emergence of aroma in cooked meat is caused by the breakdown of amino acids and fats [20].

Taste

Based on the results of the Conover test, the L6 treatment was not significantly different from the L5, L4 and L3 treatments, but significantly different from the L2 and L1 treatments. The L5 treatment was not significantly different from the L4, L3 and L2 treatments, but significantly different from the L1 treatment. The L4 treatment was not significantly different from the L3 and L2 treatments, but significantly different from the L1 treatment. The L3 treatment was not significantly different from the L2 and L1 treatments and the L2 treatment was not significantly different from L1.

The highest level of preference for the taste of pempek made from sangkuriang catfish surimi was found in the L6 treatment (1.50 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with a dominant pempek savory taste with an average value of 3.90 (panelists preferred the criteria) and the lowest was in the L1 treatment (0.25 parts sangkuriang catfish surimi and 1.00 parts tapioca flour) with a distinctive taste of tapioca flour which was more dominant with an
average value of 3.15 (panelists preferred the criteria somewhat).

The L₆ treatment with the highest surimi ratio resulted in the greatest value for the resulting pempek flavor. An increase in the amount of surimi can increase the protein content of the ingredients and during the processing the protein will react with other ingredients (salt, carbohydrates and fat) to produce a savory taste that is dominantly typical of river fish pempek in the L₆ treatment, so that the L₆ treatment produces a taste that is preferred by the consumers, panelists compared to other treatments. Other treatments that use sangkuriang catfish surimi with a smaller ratio (treatments L₁, L₂, L₃, L₄, and L₅) will reduce the intensity of the savory taste typical of aquatic fish [21].

CONCLUSION

Based on the research that has been carried out, the following conclusions can be drawn: The highest preference level for the color of pempek made from sangkuriang catfish surimi was found in the L₁ treatment (0.25 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with white pempek color typical clean fish pempek with an average value of 4.30 (panelists' preferred criteria). The highest level of preference for the taste and aroma of pempek made from sangkuriang catfish surimi was found in treatment L₆ (1.50 parts of sangkuriang catfish surimi and 1.00 parts of tapioca flour) with a savory taste and dominant pempek aroma with an average value 3.90 (panelists preferred criteria) and 4.30 (panelists preferred criteria). Our suggestion is to use the L₆ treatment (1.50 parts sangkuriang catfish surimi and 1.00 parts tapioca flour).

It is hoped that this can be an alternative raw material for making pempek, when the price of snakehead fish is expensive in the market, besides that it can increase food diversification.
REFERENCE

Organoleptic Tests of Pempek with Various...

10.1088/1755-1315/564/1/012042.

