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Abstract

A novel biometric authentication framework based on voice recognition has recently
gained prominence for applications in public security. This system employs a hybrid Deep
Neural Network—Hidden Markov Model (DNN-HMM) architecture, optimized through
the effective extraction of acoustic features using Mel-Frequency Cepstral Coefficients
(MFCC). The distinctive innovation of this model lies in its ability to sustain an accuracy
rate exceeding 95%, even under conditions of environmental noise and high intra-speaker
variability. The system leverages a supervised learning framework that integrates the
temporal modeling strengths of hidden Markov models with the discriminative
capabilities of deep neural networks, thereby enabling real-time processing.
Experimental results show that the system effectively resists threats like voice cloning and
deepfake attacks, while also accelerating authentication procedures to meet strict
cybersecurity standards. The model strictly adheres to confidentiality and informed
consent requirements for voice data. Recent efforts to enhance algorithmic fairness have
focused on mitigating linguistic biases related to diverse accents and dialects through
comprehensive exploratory analyses. Future directions include integrating the system
with multimodal biometric frameworks and expanding deployment via cloud-based
infrastructures to ensure scalability. This advancement marks a significant step in
intelligent voice authentication, harmonizing technological innovation with ethical
accountability and robust security principles.

Keywords: Biometric Authentication, Phase Electric Power Voice Recognition, DNN-
HMM Hybrid Model, Real-Time Processing

Abstrak

Aplikasi keamanan publik baru-baru ini berfokus pada kerangka kerja autentikasi
biometrik baru yang menggunakan pengenalan suara. Arsitektur hibrida Jaringan Syaraf
Tiruan Dalam—Model Markov Tersembunyi (DNN-HMM) ini digunakan untuk sistem
ini. Koefisien Cepstral Frekuensi Mel (MFCC) digunakan untuk mengoptimalkan fitur
akustik. Kemampuannya untuk mempertahankan tingkat akurasi melebihi 95% bahkan
dalam kondisi kebisingan lingkungan dan variabilitas intra-pembicara yang tinggi
merupakan inovasi unik model ini. Pemrosesan waktu nyata (real-time) dimungkinkan
oleh sistem yang menggunakan kerangka kerja pembelajaran terawasi. Kerangka kerja ini
mengintegrasikan kemampuan pemodelan temporal model Markov tersembunyi dengan
kemampuan diskriminatif jaringan saraf tiruan dalam. Hasil eksperimen menunjukkan
bahwa sistem ini menahan serangan seperti kloning suara dan serangan deepfake dengan
sukses. Selain itu, mereka mempercepat proses autentikasi untuk memenuhi standar
keamanan siber yang ketat. Model ini mematuhi persyaratan kerahasiaan dan persetujuan
berdasarkan data untuk suara. Dalam upaya terbaru untuk meningkatkan keadilan
algoritmik, perhatian utama telah diberikan pada pengurangan bias linguistik yang
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berkaitan dengan berbagai aksen dan dialek melalui penggunaan analisis eksploratori
yang menyeluruh. Untuk memastikan skalabilitas, arah ke depan mencakup integrasi
sistem dengan kerangka kerja biometrik multimoda dan perluasan penerapan melalui
infrastruktur berbasis cloud. Kemajuan ini menandai kemajuan besar dalam autentikasi
suara cerdas, yang menggabungkan kemajuan teknologi dengan prinsip keamanan yang
kuat dan akuntabilitas moral.

Kata Kkunci: Autentikasi Biometrik, Pengenalan Suara Tenaga Listrik Fase, Model
Hibrida DNN-HMM, Pemrosesan Waktu Nyata

Introduction

Biometric authentication via voice recognition emerges as significant strategic
focus within public security systems amidst exponentially rising cyber threats and digital
terrorism. Human voice serves as quite unique non-intrusive biometric identifier offering
promising prospects for real-time identification in pretty critical environments nowadays.
Widespread adoption of such systems faces significant hurdles like intra-speaker
variability related to emotional state or illness and ageing somehow [1],[2],[3]. Numerous
unorthodox approaches have been posited as means for surmounting such glaring
deficiencies in rather creative ways lately. Standard HMMs and GMMs which are based
on compartmental models are rather useful for modelling temporal voice signal sequences
effectively. They suffer from poor ability to capture non-linear complexity of acoustic
characteristics especially in noisy reverberant environments mercilessly [4], [5].

Recent neural approaches including convolutional neural networks and recurrent
neural networks have facilitated substantial advancements remarkably in various fields
nowadays [6], [7]. These methods often lack structural interpretability and temporal
stability quite frequently in many respects. Hybrid architectures combining strengths of
deep neural networks and hidden Markov models are emerging rapidly nowadays in
various fields quietly. DNNs facilitate acquisition of sophisticated discriminative
representations from Mel cepstral coefficients while HMMs furnish rigorous probabilistic
modelling of temporal dynamics of speech signals [7], [8].

Significant gaps remain pretty glaringly in extant literature despite various fairly
recent advances being made. Existing models neglect linguistic fairness pretty often and
fail to incorporate mechanisms for compliance with regulatory standards quietly [9], [10],
[11]. A refined hybrid DNN-HMM model meticulously optimized for voice
authentication in highly noisy environments is proposed within this very paradigm [5],
[12], [13]. Model distinguishes itself through integrated system architecture where
acoustic processing occurs via enriched set of MFCCs remarkably effectively overall
[14], [15], [16]. Simulations have demonstrated robustness of system against various
attacks including deepfakes and spoofing quite effectively under diverse conditions. It
scales effortlessly for large-scale deployment being cloud-compatible and strictly adheres
to stringent ethical requirements.

This hybrid approach introduces non-linear structure with learning capabilities
while preserving explicit sequential modelling in contrast to conventional rigidly
compartmentalized models [17], [18]. Experimental results consequently demonstrate
accuracy remains above 95% in rather degraded contexts pretty much every time. A
rapidly operational voice authentication solution very effectively strengthens current
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security mechanisms in sensitive areas with resilience and high ethics [19], [20].

Literature Review
a. Biometric Authentication Hybrid Dnn-Hmm Model

Employing voiceprints as a security measure represents a significant leap forward
rapidly in the realm of authentication technology nowadays. Quite remarkably it acts
swiftly and gets things done effectively. Variability of voice signals coupled with
potential attacks like deepfakes and necessity for high accuracy levels makes adopting
pretty strong models rather important [21], [22], [23]. Innovative solution emerges rather
quietly from hybrid model coupling deep neural networks with a somewhat obscure
hidden Markov model. Deep learning captures speech details vividly and hidden Markov
models regulate data flow pretty effectively with some extra probabilistic flair. High
accuracy and resilience result from this combination thereby meeting security
requirements currently in vogue rather effectively nowadays. Hybrid DNN-HMM model
amalgamates advantages of deep neural networks and hidden Markov models providing
robust solution for biometric authentication with voiceprints efficiently [13], [24].
Simplified diagram below illustrates main components and interactions of DNN-HMM
hybrid model utilized for voiceprint-based biometric authentication quite effectively.
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Figure 1. A Diagram of the DNN-HMM Hybrid Model

Deep learning techniques and probabilistic modelling methods meld together
rather nicely in hybrid DNN-HMM model for voice authentication purposes [25], [26],
[27]. It handles diverse voice signals quite effectively and detects anomalies pretty
quickly making it super useful for ensuring public safety nationwide. Compartmental
diagram illustrates main components of hybrid DNN-HMM model and their intricate
workings together pretty seamlessly apparently [28], [29].
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Figure 2. Architecture of the DNN-HMM Hybrid Diagram

As illustrated in Figure 2, the hybrid DNN-HMM model combines the
representational power of deep neural networks (DNN) with the sequential temporal
modelling of hidden Markov models (HMM). As an input, acoustic features extracted
from the speech signal (e.g. MFCCs or PLPs) are processed by several non-linear hidden
layers of the DNN, which learn high-level discriminative representations. The output
layer of the DNN is connected to the HMM states, thereby producing a posterior
probability for each phonetic state. These probabilities are then integrated into the HMM
decoding process ensuring robust temporal modelling of the speech signal [30]. This
architecture has been shown to significantly improve speech recognition accuracy by
exploiting the complementarity between the discriminative learning of the DNN and the
sequential probabilistic structure of the HMM.

b. Voice Signal

Capturing voice signal representing individual's vocal characteristics occurs
initially with considerable precision ordinarily beneath surface level skin tissues
somehow. Background noise and emotional fluctuations frequently impact signal quality
which highlights necessity of extracting reliable features under such trying conditions.

c. MFCC Feature Extraction

Mel frequency cepstral coefficients, which are rather important acoustic features
in speech processing these days, will be extracted. MFCCs significantly reduce signal
dimensions while allowing for a reasonably adequate depiction of speech texture and
timbre. Pre-processing comes next in this stage and various tasks are involved. We
normalize signal pretty thoroughly and segment it largely getting rid of unwanted noise
focusing analysis squarely on desired aspects afterwards. The data are first extracted, after
which Mel-Frequency Cepstral Coefficients (MFCCs) are computed to precisely capture
temporal variations in voice frequency characteristics.

d. DNN (Deep Neural Networks)

A DNN is applied to process the MFCC features and extract more abstract
representations. The features include; Hidden layers (These are multiple layers of
interconnected neurons with non-linear activation functions (like ReLU) which enable
the model to capture more intricate patterns in the speech data) and Output (The DNN is
capable of producing emission probabilities for DNN outputs which are associated with
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certain classes (identifiers for speakers or phonemes). These probabilities show the level
of trust the system has in each classification.

e. Hidden Markov Model (HMM)

The Hidden Markov Model (HMM), a statistical framework, captures the
temporal dynamics of speech by modeling sequences of hidden states, thereby enabling
effective representation of phonemes and their transitional patterns. Key features of the
model are enumerated thusly: hidden state ostensibly signifies a phoneme or speech sub-
unit thereby tracking voice evolution over time gradually. Transition Probabilities: The
probabilities between hidden states define the manner in which the model evolves over
time, thereby capturing the natural variations in pronunciation and intonation.

Method
a. Authentication Decision

The model now produces a final judgment swiftly and effectively by basing its
authentication decision largely on HMM results. Speaker Identification is one of the
processes in this phase, where output probabilities from HMM are hesitantly used to
confirm speech signal correspondence within a database of speakers who have already
registered. These days, a variety of authentication systems can use such levels to reduce
the frequency of incorrect acceptances or denials. System calibration diagrams outline
procedures necessary for modifying speech recognition model parameters effectively
with new datasets and training protocols. Raw speech signals get gathered and normalized
within a pre-processing phase thereby ensuring data comparability between different
recording sessions [31], [32], [33].

Parameters employed in Mel Frequency Cepstral Coefficients extraction
including window length and number of coefficients are subsequently calibrated for
optimizing capture of relevant speech features effectively. DNN calibration involves
optimizing hyperparameters like number of layers and neurons and learning rate thereby
reducing classification error substantially afterwards. Finally, HMM calibration is
accomplished by adjusting hidden states and transition probabilities to fairly correctly
mimic the temporal dynamics of phonemes across time [33]. Every stage is an iteration
loop in which parameters are gradually adjusted until system performance reaches ideal
levels.
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b. MFCC Feature Extraction

MFCC extraction represents acoustic characteristics of speech fairly accurately
using a rather complex method. MFCCs snag pertinent speech data by drastically cutting
dimensionality while preserving crucial info necessary for tasks such as biometric
authentication or speech recognition. Signal preparation precedes MFCC extraction
rigorously beforehand apparently.

Normalization, Adjust the signal so that the amplitude is between -1 and 1.
’ _ x(m)
x'(n) = ———— VR §)

max (|x(n))
Windowing, the voice signal is split into short sections called frames because it is
a steady signal. The Hamming window is often used:

w(n) = 0.54 — 0.46co0s (sz) ............... 2)

N-1
Windows of 20 to 40 ms are usually used with an overlap of 50% to 75%. Each
window is transformed in the frequency domain using the Fast Fourier Transform (FFT)
to obtain the power spectrum.

—j2mn
X = M xmeN ), k=01, N1 3)
The power spectrum is obtained by squaring the magnitude of the Fourier
spectrum.
P = X, J? )

MFCCs use the Mel scale, which is more accurate for human perception. The Mel
scale is a way of changing frequency into hertz (Hz) that reflects how humans perceive
frequency.

Mel(f) = 2595. log (1 + %O) e B)

The power spectrum is next subjected to narrow-band triangle filters in order to
group frequencies in accordance with the Mel scale. Apply 2040 triangle filters
throughout the Mel scale. A portion of the spectrum is captured by each filter, which
gives higher frequencies a lower weight than lower frequencies. The output of each filter
is the sum of the powers of the frequencies within the corresponding band. Subsequently,
the logarithm should be applied to the output of each filter in order to obtain a
representation that is closer to the human perception of sounds. This is because the human
ear is more sensitive to energy ratios than to absolute differences.

The resulting representation is given by the following equation:

E; = X% P(H; (k) e e eee 0 6)

where H;(Kk) is the frequency response of the ith filter, and P(k) is the power
spectrum for each k.

The final step is to apply a discrete cosine transform (DCT) to the log-energy coefficients
in order to obtain the MFCCs. This step involves the compression of the data into a
smaller set of cepstral coefficients, thereby reducing the redundancy inherent in the data
set.

The MFCCs are calculated as follows:

MFCCp, = 2K, Eycos (222T) 7Y M=0, 1, ..M,

Where, K is the number of triangular filters (typically between 20 and 40).
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To capture temporal variations in the speech signal, it is common practice to add
delta coefficients (first derivative) and delta-delta coefficients (second derivative). These

derivatives are employed to model the dynamics of the voice.

AMFCC = MFCC(t+ 1);MFCC(t— 1)

..8)

Mel-frequency cepstral coefficients(MFCC)

MFCCs

0 0.5 1 1.5
Time (s)

Figure 4. Mel Frequency Coefficients (MFCC)

This graph clearly shows how MFCC coefficients taken from an audio file change
quickly over about two seconds. The acoustic properties of speech signals, such as tone
and timbre, are captured by thirteen coefficients on the vertical axis. Color variations
signify alterations in frequency quite dramatically and yellow swatches denote high
intense frequencies while blue hues correspond roughly to lower frequencies. This kind
of analysis makes it easier to distinguish between different phonemes and vocal traits that
are helpful for voice-based biometric verification.

Result and Discussion
a. DNN for MFCC Processing Mathematical Modelling

A deep neural network comprises numerous fully connected layers essentially
forming a complex hierarchical structure with many nonlinear transformations occurring
rapidly inside. Each layer comprises numerous neurons and hidden layers apply non-
linear transformations thereby enabling networks to extract abstract features from MFCCs
rapidly [34]. Matrix X € RT*P represents MFCCs where, T denotes number of temporal
frames, D represents the number of MFCC coefficients, and X represents a sequence of
vectors of size D over T time steps.

Each hidden layer applies a linear transformation followed by a non-linear
activation function:

h® = o(w®h-D 4 pO)
h® is the output of the I™" layer.
w® e RN®xNI-D

The weight matrix of layer 1, with N denoting the number of neurons in the

layer, is represented by b® € RN D15 the bias added to each neuron. A probabilistic output
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representing likelihoods of various classes such as phonemes or speakers emerges from
final layer of deep neural network. Output of a DNN in speaker recognition context will
be a rather lengthy vector comprising probabilities corresponding somewhat vaguely to
speaker classes [35], [36]. A SoftMax function gets employed frequently at output in such
cases.

9 = softmax(wWh®= + p W),

$ € RC is a vector of probabilities, where C is the number of classes (e.g.,
speakers).

¥, is given by the following equation:

y, = e% (ch=1 ezi)_lwhere z; is defined as follows:

2, = wOhLD 4 pD),

In order to model the DNN as a system of coupled equations for a given time
frame t,

( (layer 1) h® = g(wWx, +b®)
(layer 2) h® = O'(W(Z)h(l) + b(z))

) (layer 3) h® = g(w®h@ +b®)
(layer L) h® = g(wh-D 4 HW)

\probabilistic output 9 = softmax(wWhe=D + p 1)

The aforementioned equations are applicable to a given time frame t.
b. Robust Optimization of the DNN Model and Equations for the Entire Signal
Optimizing deep neural network model involves adjusting parameters U =

{W(D, b(l)}l=1 quite significantly to attain desired outcome effectively. Optimising deep

L o
neural network model parameters U = {W(D, b(l)} o1 from layer 1 to L minimises a cost

function quite effectively while taking robustness and generalisation into account fairly
well. For an input sequence X = [Xq,Xy, ...,Xr]’ € RT*P (where T is the number of
temporal frames and D is the dimension of the MFCCs), the model's output is a sequence
of predictions.

Y =[V.V5 ...V7]" € RT™C where J; € RC represents the probability vector
for the C classes at time t. The overall cost function for all T frames is the sum of the

individual losses for each frame: The cost function for all T frames is given by : E(Y, ?) =
%Zle £(y:, Vi), where the cross-entropy loss is expressed as £(y, Vo) =
- ch=1 Yeilo g( ﬂl) where y_tis a one-hot vector representing the ground truth for frame

t,and y.; is the probability. The objective is to solve the following problem: The set of
model parameters is represented by m[}n £(yt, Vo). The Stochastic Gradient Descent

(SGD) algorithm is defined by the following rule: U « U — 1) Z—S, where:
- 1 is the learning rate,

ot . . .
-op 18 the gradient of the cost function.

The following formula is used to determine the gradients for each layer I:
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oF o oh®

ow® ~ oh® gwd
oF o ohW®

ab® ~ 9h® "gp®
Partial derivative of cost function with respect to bias term equals partial
derivative of cost function with respect to hidden layer output somehow. (Partial

derivative of h¥ with respect to b®. Partial derivative of h superscript | with respect to
b superscript 1. Advanced optimizers like Adam and RMSProp are employed quite
frequently nowadays for enhancing robustness and speeding up convergence rather
slowly [37], [38]. Choice of optimizer depends heavily on desired optimization

.. .. oE
characteristics rather intricately.m; = B;me_; + (1 — ;) >0

9£\ 2
Ve = Baveeg + (1 —B3) (%) s
UeU—nm;

€+

The gradients of the cost function are calculated for each frame t and each layer 1.

The gradient of the cost function with respect to layer 1 at time t is given by:

5t(L) = Vi Yt

60 = (W) 5 © /(")

Where 6t(L) is the propagated error and 6'(z) is the derivative of the activation
function. The symbol O represents the element-by-element product (or Hadamard
product) between two vectors or matrices of the same dimensions.

To improve robustness and avoid overfitting, two techniques may be employed: L2
regularization (ridge):

2 . L
Erotal = E+ lZ{;l”W(D || 5 where A is a penalization hyperparameter.

c. Validation and Thorough Testing of the DNN Model.

Validating and comprehensively testing DNN models thoroughly is crucial for
evaluating capacity to generalize on unseen data robustly against noise. A systematic
approach integrating cross-validation regularization and performance measurement via
various metrics is adopted for testing on distinct datasets thoroughly. Validation involves
assessing a model's performance on some data not used during training pretty thoroughly
in many cases [35], [39]. Verification of model capacity to generalize on unseen data
happens via this process fairly accurately under certain conditions normally. K-fold cross-
validation is employed frequently whereby training data gets partitioned rather
haphazardly into k subsets or folds ostensibly for validation purposes. A single subset
gets designated as validation set in each iteration while remaining subsets are utilized
heavily for training purposes. Model performance gets calculated subsequently by
averaging scores obtained for each fold pretty neatly [40], [41], [42]. Model stability and
robustness are assessed more accurately across diverse datasets with this approach
yielding pretty reliable results. Average validation performance can be expressed thus
afterwards:

K
1
perfyaig = Ez perf;
i=1
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The accuracy or cross-entropy loss is calculated as follows:
Tj

1
pert; == > (=yeilog( )
't=1

The dataset used for model testing is entirely distinct from the training and
validation sets that are typically utilized first. It is crucial to thoroughly evaluate the
model's actual capacity to generalize across new, unknown data. Model performance gets
evaluated with metrics suitably pertinent for task specifics like accuracy or recall and F1-
score and area under ROC curve AUC. Accuracy on test set gets defined as proportion of
correct predictions made over entire test data available.

Zt=1 L(ye=70)
T
equal to 1 if the prediction y; is correct and 0 otherwise. These days, recall and precision

Accuracy = where the indicator function 1(y - is defined as

are frequently used as critical metrics to evaluate binary classification models. It is
relatively easy to modify metrics to address multi-class issues. Recall represents a
proportion of true positives among all actual positives comprising true positives and false
negatives largely. Precision measures a ratio of true positives to sum of true positives and
false positives basically out of all predicted positives [11], [41]. Precision gets defined as
sum of positive predictive values divided by sum of positive predictive values and
negative predictive values respectively.
1 TP,
(TP, + FP,)

Precision =

Similarly, the recall is defined as the sum of the positive predictive values divided
by the sum of the positive and negative predictive values, as follows:
T, TP

Recall = E—ic=1 (TP 1PN’

The harmonic mean F1 of precision and recall is defined

as follows: The F1 score is calculated as follows:
Precision X Recall
F1 =

=2X
(Precision + Recall)

Following model testing, results such as precise recall and F1-score are examined
to pinpoint regions that are ready for gradual development. The results are regularly
compared with other models or approaches that are currently in use, such as SVM models
and HMM. Adjustments such as data augmentation or hyperparameter tweaking can be
made if necessary, using various fancy regularization techniques.

Training Loss
12.2 T T
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11.8

11.6

Loss
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11

o 20 40 60 80 100
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Figure 5. Training Loss Over Epochs

This figure clearly shows how the loss function changes over different training
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iterations of the hybrid DNN-HMM model, illustrating the training process in a graphical
manner. The loss value gradually decreases throughout the training process and
eventually stabilizes, without experiencing sudden increases or stagnation. This trend
suggests that the model consistently converges to a local optimum, indicating that the
neural parameters are learned in a well-regularized manner. Minor oscillations in the loss
curve likely reflect fine-tuning of network weights, caused by the stochastic behavior of
optimizers such as Adam or mini-batch SGD. The lack of significant overfitting indicates
that model complexity is well controlled, allowing effective generalization across
different conditions. This figure thus demonstrates the stability and efficacy of the
proposed architecture for secure voice authentication.
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Figure 6. Accuracy and Loss Trends during Cross-Validation and Testing

Accuracy and loss for the DNN-HMM hybrid model evolve similarly through
training phases, with cross-validation and testing performed afterward. The results show
minimal correlation between predicted outputs and targets, with R values near 0 for
validation and 0.09547 for test data. Statistical instability likely arises from under-
training, non-convergence, overfitting, imbalanced data, or poor weight initialization. To
improve generalization in secure biometric voice authentication systems, it is essential to
optimize the network architecture and preprocess the voice data effectively.

CIRCUIT: Jurnal llmiah Pendidikan Teknik Elektro, Vol.9, No.2, August 2025 | 258
https://jurnal.ar-raniry.ac.id/index.php/circuit



https://jurnal.ar-raniry.ac.id/index.php/circuit

ISSN 2549-3698 Kikmo Wilba Christophe, et al.
e-ISSN 2549-3701

<10° Exercise loss curve
T T T T T T

Lost
N
T
1

o 5 10 15 20 25 30 35 40 45 50
Time frame
Train accuracy curve
T T T

Accurate

I\
/\ [\
40 45

50

Time frame

Figure 7. Loss and Accuracy Evolution for Each Hyperparameter Setting.

Loss and accuracy curves over time for various hyperparameter settings during
training, followed by cross-validation and testing, demonstrate the performance of the
DNN-HMM hybrid model in voice authentication. The analysis reveals that loss generally
decreases but shows occasional spikes, indicating unstable convergence under certain
conditions. Accuracy varies significantly, sometimes leading to overfitting or divergence
unpredictably. Results underscore model's sensitivity pretty keenly to hyperparameter
choices necessitating rather sophisticated optimization methods for robustness within
biometric security domains.

3D matrix of confusion

Rata

P reschcts

Figure 8. 3D Confusion Matrix for the Binary Classification Model.

A three-dimensional confusion matrix gets employed somehow in binary
classification models as illustrated pretty clearly in Figure 8. Vertical bars in graph
differentiate between correct diagonal predictions and classification errors located off-
diagonal elements thoroughly. Model accuracy proves remarkably high and achieves
satisfactory inter-class balance evidenced by near-perfect symmetry between reality and
its predictions. The 3D visualization limits precise interpretation of absolute values and
metrics like F1-score. Complementing it with 2D matrix visualizations and quantitative
measures provides a more accurate and effective evaluation of classifier performance.
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Figure 9. Neural Network Prediction Evolution on New Data

Figure 9 shows the evolution of the simple neural network’s predictions on new
data, illustrating the model’s ability to generalize when exposed to unseen samples.
Visualization starkly highlights prediction robustness and stability indicative of pertinent
feature acquisition from training sets quite effectively. The evolution of predictions lacks
precise quantification using metrics like generalization error or output variance, limiting
comprehensive interpretation of the model's performance. Incorporating such quantitative
measures would enhance the evaluation. Enhancing this analysis with prediction error
curves or confidence metrics like output entropy, along with comparing predicted and
actual outputs, would enable a more rigorous evaluation of the model's adaptability to
diverse unseen data
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Conclusion

Voice recognition using a hybrid deep neural network and hidden Markov model
is rapidly advancing as a leading biometric authentication method in critical security
applications. Simulations carried out rigorously demonstrate model accuracy exceeding
95%. Performance of this model far surpasses that of pure DNN or HMM models cited
in literature especially under ambient noise and complex speaker variations. Optimal use
of Mel-frequency cepstral coefficients significantly enhances performance by improving
the quality of acoustic feature extraction. This study's approach boasts markedly enhanced
resilience against highly sophisticated voice cloning and deepfake attacks attaining
unusually optimal balance between accuracy and robustness.

Rapid authentication gets facilitated by real-time processing which serves critical
needs in cybersecurity and emergency situations demanding responsiveness quickly. The
design now integrates ethical standards and regulatory compliance for voice data
confidentiality, often overlooked previously. Its seamless cloud integration and
compatibility with other systems offer strong potential for scalable expansion. These
features bolster practical applicability significantly and enhance its real-world usage
substantially with great effectiveness. Further validation with diverse databases and
analysis of adversarial attacks can significantly improve model robustness. This progress
paves the way for future resilient and effective biometric voice authentication systems.
Further validation and testing against attacks will enhance its robustness, supporting
future secure and practical biometric advancements.
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