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Abstract  
Enhancing the capacity to monitor swift environmental shifts at finer scales requires 
satellite image that offers high spatial and temporal resolution. However, no 
individual satellite can offer images meeting both criteria simultaneously. To tackle 
this challenge, spatial temporal fusion algorithms have been developed to derive 
fine-scale and time-series images. Conversely, effective monitoring of water levels 
is crucial for preventing natural disaster, such as flood and tsunami mitigation. Yet, 
monitoring these natural changes regularly poses challenges for remote sensing 
satellites, given their limitations in either spatial or temporal resolution. For instance, 
the spatial resolution of 30 meters of Landsat 8 provides imagery with a but lacks 
the temporal resolution needed to capture dynamic events. On the contrary, the 
Himawari 8 has the capability to monitor the entire hemisphere every 10 minutes. 
However, its inadequate resolution affects the precision of sea water change 
mapping.  This research seeks to utilize Landsat OLI and Himawari-8 images jointly 
for tracking sea level variation patterns. Our approach involves calculating a water 
index from both Landsat and Himawari images, then using an image fusion 
algorithm to merge these indices. Next, we identify water coverage by applying a 
specific threshold on the water index. The comparison of water percentages with 
reference water height observations has delivered encouraging outcomes. 
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1. Introduction  

 Recent advancements in remote sensing have transformed the way high-resolution 
images are obtained, unlocking numerous potential applications. One notable application 
is the tracking of sea level changes, which is essential for managing natural disasters such 
as floods and tsunamis [1]. Sea level, referring to the average height of the ocean surface 
between high and low tides, has a direct impact on coastal ecosystems and freshwater 
reserves as it increases. Therefore, monitoring sea level is vital for efficient disaster 
preparedness. While traditional methods like water gauge stations are effective, they are 
limited by their low spatial resolution and scattered deployment. To address these 
challenges, remote sensing technologies have been utilized since the 1970s. Instruments 
such as MODIS and Landsat Enhanced Thematic Mapper Plus (ETM+) have played a 
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crucial role in identifying and tracking surface water [2]. Additionally, satellites such as 
Landsat and Himawari-8 offer data in different resolutions, temporal intervals, and 
spectral ranges, as outlined in Table 1. For example, Landsat 8's OLI offers detailed 
spatial clarity at 30 meters but only updates every 16 days. Conversely, Himawari-8's AHI 
8 provides frequent updates every 10 minutes but sacrifices spatial detail. Although these 
sensors are valuable, none can offer both high spatial and temporal resolutions 
simultaneously. To mitigate this constraint, blending imagery from multiple sensors has 
become increasingly popular. 

 
TABLE 1. VARIOUS SATELLITES WITH CORRESPONDING RESOLUTIONS 

 
Image fusion, a technique utilized in remote sensing, optimizes data collection by 

amalgamating images acquired from diverse sensors [3]. Image fusion algorithms are 
generally divided into two primary categories. The first category, referred to as spatial-
spectral image fusion or pan-sharpening, integrates a low-resolution multispectral image 
with a high-resolution panchromatic image [4]. The second category, known as spatial-
temporal image fusion, merges high spatial resolution data with high temporal resolution 
data to enhance both spatial and temporal resolutions [5]. This method leverages the 
strengths of sensors offering high temporal resolution alongside those providing medium 
to high spatial resolution. 

Consequently, the main aim of this research is to investigate the viability of 
employing spatial and temporal image fusion techniques for effectively monitoring 
coastal dynamics and sea level changes. This objective will be achieved through three 
steps outlined in the subsequent section: firstly, generating 30-meter mNDWI images of 
the coastal region; secondly, evaluating the performance of the fusion results; and finally, 
assessing the water coverage. All details pertaining to these three steps will be discussed 
in the following section. 

 
 
 

Name Chanel/Band Spectral (µm) 
Spatial 

Resolution 
(m) 

Termporal 
resolution 

LANDSAT - 8 

Band 1 – 7 
and band 9 0.433 – 2.290 30 m 

16 days Band 8 0.500 – 0.680 15 m 
Band 10 and 
Band 11 1.060 – 1.251 100 m 

SPOT-5 

Green 0.500 – 0.590 10 m 
 Daily 

Red 0.610 – 0.680 
NIR 0.780 – 0.890 
SWIR 1.580 – 1.750 20 m 
Panchromatic 0.480 – 0.710 5 m 

Quickbird 

B 0.450 – 0.520 

2.62 m 1 – 3.5 
days 

G 0.520 – 0.600 
R 0.630 – 0.690 
NIR 0.760 – 0.900 
Pan 0.450 – 0.900 0.65 m 

Himawari-8 
B 0.470 1000 m 

10 mins G 0.510 1000 m 
R 0.644 500 m 
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2. Research Method  
This study investigates the practicality of blending satellite images for monitoring 

high-frequency fluctuations in sea levels. The workflow outlined in the methodology are 
shown in Figure 1. 
 

 
Figure 1. The methodology of the study 

 
Figure 2 illustrates the various stages of this study, beginning with the initial phase 

of data collection, as detailed in Figure 2 below. Landsat 8 and Himawari-8 data are 
utilized in this research to achieve its objectives. After acquiring the data, the subsequent 
phase entails data processing, notably the application of Extract by Mask customized to 
the area of study as shown in Figure 4.  

 

 
Figure 2. The Study Area of The Research 
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The primary step of this research is divided into two segments: the blending section 
and the evaluation phase. In the blending section, vegetation density is calculated using a 
modified Normalized Difference Water Index (mNDWI). Once vegetation density is 
determined, mNDWI images from Landsat 8 and Himawari-8 are fused using the 
Temporal Adaptive Reflectance Fusion Model (STARFM). The final stage of this study 
involves the evaluation stage, which comprises two components: determining water 
coverage and conducting the accuracy assessments. 

Channels or bands what we use is band Green (0.51 – 0.59 µm) and band 5 or SWIR 
(2.11 – 2.29 µm) for mNDWI calculations [6 - 9] as shown in Table 2. This research 
concentrates on the Kaohsiung Port of Taiwan. Following image acquisition, the Extract 
by Mask technique was used to isolate images of the study area from both Landsat and 
Himawari, as illustrated in Figure 3. This study seeks to assess the practicality of 
monitoring sea levels by employing the STARFM technique to integrate satellite imagery 
captured by various sensors, namely the Advanced Himawari Imager and Landsat 8. 
Specifically, the process of blending part involves calibrating and aligning all images 
within the study area, Kaohsiung Port, to surface reflectance through affine 
transformation. 

After capturing images from both the Himawari and Landsat satellites, the next step 
involves utilizing specific bands of light known as the Green (G) and Shortwave Infrared 
(SWIR) bands as shown in formula (1). These bands are particularly useful for identifying 
water bodies due to their unique spectral characteristics. To quantify the presence of 
water, a metric called the Modified Normalized Difference Water Index (mNDWI) is 
calculated using the data from these bands. This index is a mathematical formula that 
compares the reflectance of light in the green and SWIR bands. 
 
 
 
 
 

TABLE 2. CORRESPONDING BAND LIST OF LANDSAT OLI AND HIMAWARI-8 
 

Spectral 
Region 

Landsat OLI 
Wavelength 

(µm) 

Himawari -8 
Wavelength 

(µm) 

Landsat OLI 
Spatial 

Resolution (m) 

Himawari-8 
Spatial 

Resolution (km) 
Ultra Blue 0.43 - 0.45 - 30 - 

Blue 0.45 - 0.51 0.47 30 1 
*Green 0.53 - 0.59 0.51 30 0.5 

Red 0.64 - 0.67 0.64 30 1 
NIR 0.85 - 0.88 0.86 30 2 

SWIR 1 1.57 - 1.65 1.61 30 2 
*SWIR 2 2.11 - 2.29 2.23 30 2 

 
 

Once the mNDWI values are computed, a threshold value of 0.4 is applied to the 
results. This threshold serves as a boundary, allowing for the differentiation between areas 
that contain water and those that do not. When the mNDWI value exceeds 0.4, it indicates 
the presence of water, while values below 0.4 suggest non-water areas. This process is 
crucial for various applications such as monitoring changes in water bodies, assessing 
water quality, and managing water resources. Through the use of satellite imagery and 
sophisticated image processing methods, researchers and policymakers can obtain critical 
insights into the behavior of water bodies, enabling them to make well-informed decisions 
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about water management and conservation initiatives. 
 

 
The second part of the blending section, the image fusion, applies the STARFM to 

predict the high temporal and spatial resolution. The STARFM algorithm is a 
sophisticated tool utilized in remote sensing, particularly for integrating satellite imagery 
obtained from different sources and time points. In its operation, STARFM requires 
specific datasets: images captured by both the Himawari and Landsat satellites, all 
acquired on a common reference time as detailed in Figure 3. Additionally, it utilizes the 
image of Himawari obtained at a predicted time along with the classification map from 
the reference time as the inputs. Importantly, all these datasets are represented in terms of 
water index values, which are numerical indicators revealing the presence or 
characteristics of water within the observed area. 

 

 
Figure 3. (a) mNDWI image of Landsat at the reference time. (b) mNDWI image of 

       Himawari at the reference time. (c) mNDWI image of Landsat at the predicted  
                       time. (d) mNDWI image of Himawari at the predicted time 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                                                   (1) 
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This methodological approach of STARFM aligns well with a previously 
established framework known as the Index-then-Blend approach. This methodology, as 
elucidated in prior research [10], follows a systematic sequence. Initially, it involves the 
computation of various indices, including water indices, which are tailored to highlight 
specific features or phenomena of interest, such as water bodies. Subsequently, the 
algorithm blends the information from the different datasets, integrating the water index 
values obtained from Himawari and Landsat imagery alongside the Landsat-derived 
classification map. By adhering to this sequential process, STARFM effectively harnesses 
the strengths of each dataset and ensures their harmonious integration, resulting in 
comprehensive and accurate outputs for further analysis and interpretation.  

After the blending part, as the evaluation section of this study, the steps are divided 
to two evaluations, spatial evaluation and temporal evaluation. For spatial evaluation, 
some common accuracy assessments such as, Kappa Coefficient, Commission Error, 
Omission Error, and Overall Accuracy are calculated. On the other hand, the temporal 
trends are captured from the results of predicted time as the temporal evaluation. To obtain 
additional reference classification maps at varying water levels, it's necessary to acquire 
more than one Landsat image. Currently, our preliminary findings are based on just three 
nearly cloud-free Landsat images. Subsequently, for each Landsat date available, we 
initially utilize the existing Tide Model to determine water levels in the study area at 10:30 
a.m. 

Subsequently, all hourly Himawari-8 images from 09:00 a.m. to 03:00 p.m. on 
March 1, 2017, are gathered and the corresponding water height for each hour is 
determined. Table 3 presents the hourly water height data for March 1, 2017, which will 
serve as the reference image for the anticipated time. Depending on the chosen reference, 
we will subsequently obtain a 30-meter resolution image for each hour on this date. 

 
TABLE 3. TIME POINTS OF HIMAWARI-8  

No Reference Time 
1 09.00 a.m. 
2 10.00 a.m. 
3 11.00 a.m. 
4 12.00 p.m. 
5 13.00 p.m. 
6 14.00 p.m. 
7 15.00 p.m. 

 
Once all the aforementioned data is obtained, we proceed to match the water height 

of each hour from Himawari-8 with the water height of the Landsat image. If the water 
heights between the Landsat date and the corresponding time from Himawari-8 closely 
align, the Landsat image can be utilized to generate a classification map as the reference 
for predicting the high-resolution image at the matched hour as detailed in Table 4. To 
clarify, we can take the first instance at 09:00 a.m. For this, we utilized Himawari-8 and 
Landsat images at 10:30 a.m., along with the classification map, as reference images at 
the reference time. Then, the Himawari-8 image at the predicted time, 09:00 a.m., is 
utilized as the reference at the predicted time. This approach will be implemented for each 
corresponding pair mentioned below. 
 
3. Results and Discussion 

 We examined the feasibility of blending the satellite imageries into two evaluations, 
spatial evaluation and temporal evaluation. Spatial evaluation focuses on assessing the 
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spatial accuracy and precision of the blended data. It involves examining how well the 
blended data aligns with actual spatial features and boundaries. Spatial evaluation may 
include measures such as Kappa Coefficient, Commission Error, Omission Error, and 
Overall Accuracy. The goal is to ensure that the blended data accurately represents the 
spatial characteristics of the area under study. Temporal evaluation, on the other hand, 
concerns the analysis of temporal consistency and stability over time. It involves 
investigating how well the blended data captures temporal trends of the predicted images. 
The objective is to verify the reliability and consistency of the blended data across 
different time periods. 
 
1. Spatial Evaluation 

 To validate the results obtained from the Spatial and Temporal Adaptive Reflectance 
Fusion Model (STARFM), an actual Landsat image was utilized. This Landsat image 
served as a reference to compare and verify the accuracy of the predicted water map 
generated by STARFM. By overlaying the predicted water map with the water map 
derived from the Landsat image on a pixel-by-pixel basis, an evaluation map was created, 
as depicted in Figure 5 of the study. The evaluation map facilitated the identification of 
misclassified water areas, where discrepancies between the predicted and reference water 
maps were evident. These misclassifications often manifested as underestimations of 
water area, leading to a higher number of omission errors in the predicted water map. 
Several widely used accuracy assessment metrics, including commission and omission 
errors, overall accuracy, and the Kappa coefficient, were calculated from the evaluation 
map shown in Figure 4 and are summarized in Table 4 of the study. 
 

 
Figure 4. (a) The water map of the actual Landsat image at the reference time. (b) The water map of the 

result image at the predicted time (c) The evaluation map of the predicted 
 

 These indices provide quantitative measures to assess the accuracy and reliability of 
the predicted water map generated by STARFM. The values obtained for the accuracy 
evaluation indices as shown in Table 4, particularly the Kappa coefficient and overall 
accuracy, offer insights into the level of agreement between the predicted water map and 
the reference map derived from the actual Landsat image. High values of Kappa and 
overall accuracy indicate a strong consistency between the predicted and reference maps, 
suggesting that the predicted image generated by STARFM closely aligns with the actual 
water distribution captured by Landsat imagery. 
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TABLE 4. THE ACCURACY OF SPATIAL EVALUATION 
 
 
 

 
2. Temporal Evaluation 

 For temporal assessment, we juxtapose the water coverage with the water height 
recorded for each hour. Following the generation of predicted image results, pixel 
normalization is conducted using a threshold value of 0.4. Pixels with values equal to or 
greater than 0.4 are classified as water, while those below 0.4 are considered non-water 
pixels. This normalization divides the pixels into two categories, simplifying the 
calculation of water coverage and reducing processing time. Subsequently, water 
coverage is calculated based on the number of water pixels in each image and compared 
with water height data obtained from in-situ measurements (refer to Figure 5). This 
comparison operates on the assumption that higher water levels correspond to greater 
water coverage. The graph in Figure 6 illustrates the relationship between water coverage 
and water height. As water height increases, so does water coverage, while lower water 
heights correlate with reduced coverage. This evaluation suggests that STARFM aligns 
with this assumption. 

 

 
Figure 5. Temporal Evaluation result 

 
4. Conclusion 

This study suggests utilizing image fusion techniques to analyze and depict changes 
in sea levels along the coastline of Kaohsiung. Image fusion involves combining 
information from multiple images to create a single, enhanced image that provides more 
comprehensive insights into the landscape and environmental changes over time. By 
employing image fusion, the study aims to enhance the accuracy and detail of sea level 
change detection along the Kaohsiung coastline. The spatial evaluation of the study 
indicates that the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) 
demonstrates effective performance in blending water index data. This suggests that 
STARFM successfully integrates information from different sources to produce blended 
images with accurate representations of water indices along the coastline. The temporal 
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evaluation reveals that the fused images do not accurately correspond to the observed 
water level data gathered in-situ. This discrepancy suggests a lack of alignment between 
the fused image data and the actual water level measurements over time. One possible 
explanation for this inconsistency is the utilization of a static classification map in the 
image fusion process. To address this issue, the study proposes a new direction for future 
research. Specifically, the historical data from Landsat satellites will be incorporated to 
develop a dynamic classification map that evolves over time. This approach aims to 
improve the accuracy of image fusion by accounting for changes in land cover and 
environmental conditions over different time periods. 
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