The Potency of Bioplastic Polyhydroxyalkanoate (PHA) Producing Bacteria Isolated From Palm Oil Mill Waste
Abstract
Abstract: Polyhydroxyalkanoate (PHA) is a polymer made up of biodegradable plastics that can be synthesized by microorganisms from various substrates that contain lots of carbon sources including fatty acids and sugars. One of the substrates that contain a lot of carbon sources is waste from palm oil processing plants. PHA-producing bacteria can take advantage of excess carbon sources in palm oil waste in the form of fatty acids to be converted into PHA. This study aims to determine the potential of bacteria isolated from palm oil mill waste to produce polyhydroxyalkanoates (PHA) and to determine the optimum time required for bacteria to produce PHA. Optimization of the fermentation time was carried out at 24, 48, and 72 hours using minimum Ramsay media added with 1% palm oil and 1% glucose. The results of the study obtained 20 isolates of bacteria isolated from palm oil mill waste, and 9 of them were able to produce polyhydroxyalkanoate (PHA) qualitatively. The results of quantitative selection obtained 2 bacterial isolates capable of producing PHA, namely isolates CPS 3 and LPS2 CPS 3, with crotonic acid absorbance values of 41.6 and 5.01, respectively with a fermentation time of 72 hours. Based on the results of genotypic identification using 16S rRNA DNA sequences, isolates of CPS 3, including Bacillus sp. strain CL33 and isolate LPS 2, belonged to Bacillus flexus strain S5a. This shows that isolates from palm oil mill waste can be used as a source of isolate for PHA production.
Abstrak: Polyhydroxyalkanoate (PHA) merupakan polimer penyusun plastik biodegredable yang dapat di sintesis oleh mikroorganisme dari bermacam-macam substrat yang banyak mengandung sumber karbon asam lemak dan gula. Salah satu subtrat yang banyak mengandung sumber karbon adalah limbah yang berasal dari pabrik pengolahan kelapa sawit. Bakteri penghasil PHA dapat memanfaatkan sumber karbon berlebih dalam limbah kelapa sawit berupa asam-asam lemak untuk diubah menjadi PHA. Penelitian ini bertujuan untuk mengetahui potensi bakteri yang diisolasi dari limbah pabrik kelapa sawit dalam menghasilkan Polyhydroxyalkanoate (PHA) serta mengetahui waktu optimum yang dibutuhkan oleh bakteri dalam menghasilkan PHA. Optimasi waktu fermentasi dilakukan pada 24, 48 dan 72 jam menggunakan media minimal Ramsay yang ditambahkan minyak sawit 1% dan glukosa 1%. Hasil penelitian memperoleh 20 isolat bakteri yang diisolasi dari limbah pabrik kelapa sawit dan 9 isolat diantaranya mampu menghasilkan Polyhydroxyalkanoate (PHA) secara kualitatif. Hasil seleksi secara kuantitatif diperoleh 2 isolat yang mampu menghasilkan PHA yaitu isolat CPS 3 dengan nilai absorbansi asam krotonoat sebesar 41,6 sedangkan LPS 2 memiliki nilai absorbansi asam krotonoat sebesar 5,01 dengan waktu fermentasi selama 72 jam. Berdasarkan hasil identifikasi secara genotipik dengan menggunakan sekuens DNA 16S rRNA isolat CPS 3 termasuk jenis Bacillus sp. strain CL33 dan isolat LPS 2 termasuk jenis Bacillus flexus strain S5a. Hal ini menunjukkan bahwa isolat dari limbah pabrik kelapa sawit dapat digunakan sebagai sumber isolat untuk produksi PHA.Keywords
Full Text:
PDFReferences
Albuquerque, P. B., & Malafaia, C. B. (2018). Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. International journal of biological macromolecules. 107: 615-625. http://dx.doi.org/10.1016/j.ijbiomac.2017.09.026
Castilho, L. R., Mitchell, D. A., & Freire, D. M. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23): 5996-6009. https://doi: 10.1016/j.biortech.2009.03.088.
Chee, J. Y., Tan, Y., Samian, M. R., & Sudesh, K. (2010). Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. Journal of Polymers and the Environment, 18 (4), 584-592. https://doi: 10.1007/s10924-010-0204-1
Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: a facile solution for a greener environment. Earth Systems and Environment, 5(2), 231-251. https://doi.org/10.1007/s41748-021-00208-7
Djamaan, A., Fitra, F., Pusmegdewi., Dillasamola, D., Asiska, P.D., &Anthoni, A. (2016). Isolation and Identification of Polyhydroxyalkanoates Producing Bacteria from Soil Sample in Tropical Forest of Anai Valley, West Sumatra, Indonesia. Der Pharmacia Lettre. 8 (7) : 169-174. http://scholarsresearchlibrary.com/archive.html
Haedar, N., Fahruddin, Firdaus, Z., & Nurlaela, N. (2014). ProduksiPoli-Β-HidroksiButirat (PHB) Pada Isolat Bakteri Dari Molasses Dan Tanah Pabrik Gula. Publikasi Jurusan Biologi dan Kimia. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Hasanuddin.
Hamzah, F. H., Sitompul, F. F., Ayu, D. F., & Pramana, A. (2021). Effect of the Glycerol Addition on the Physical Characteristics of Biodegradable Plastic Made from Oil Palm Empty Fruit Bunch. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 10(3). https://doi.org/10.21776/ub.industria.2021.010.03.5
Hanson, R.S. and Philips J.A. (1981). Chemical Composition In Manual of Method or general Bacteriology. American Society for Microbiology. USA. pp, 343-344.
Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1526), 2115-2126. https://doi:10.1098/rstb.2008.0311
Jiang, G., Hill, D. J., Kowalczuk, M., Johnston, B., Adamus, G., Irorere, V., & Radecka, I. (2016).Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. International journal of molecular sciences. 17 (7): 1157. DOI: 10.3390/ijms17071157
Jinda, N., & Paniticharoenwong, T. (2016). The isolation and screening of polyhydroxyalkanoates producing bacteria from wastewater and soil from palm oil manufacturing plant. J. Biotechnol, 14, 547-555.
Kamsiati, E., Herawati, H., & Purwani, E. Y. (2017). Potensi pengembangan plastik biodegradable berbasis pati sagu dan ubi kayu di indonesia. Jurnal Penelitian dan Pengembangan Pertanian, 36 (2) : 67-76. http://dx.doi.org/10.21082/jp3.v36n2.2017.p67-76
Kresnawaty, I., Prakoso, H. T., Eris, D. D., & Mulyatni, A. S. (2016). Screening of bioplastics polyhydroxyalkanoic producing bacteria from landfill and palm oil mill effluents. E-Journal Menara Perkebunan. 82 (1) : 25-31. http://dx.doi.org/10.22302/iribb.jur.mp.v82i1.28
Liu, F., Li, J., & Zhang, X. L. (2019). Bioplastic production from wastewater sludge and application. In IOP Conference Series: Earth and Environmental Science. 344(1). https://doi.org/10.1088/1755-1315/344/1/012071
Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and environmental microbiology, 64(2), 795-799. DOI: 10.1128/aem.64.2.795-799.1998
Możejko-Ciesielska, J. & R. Kiewisz. (2016). Bacterial polyhydroxyalkanoates : Still fabulous. Microbiological Research 192: 271–282.http://dx.doi.org/10.1016/j.micres.2016.07.010
Nursanti, I. (2013). Karakteristik limbah cair pabrik kelapa sawit pada proses pengolahan anaerob dan aerob. Jurnal Ilmiah Universitas Batanghari Jambi, 13(4): 67-73. Doi: http://dx.doi.org/10.33087/jiubj.v13i4.324
Ohimain E. L., C Daokoru-Olukule., C Svlvester, Izah, A Rita AC Eke., dan J Okonkwo. (2012). Microbiology of palm oil mill effluents. Microbiol Biotech Res. 2(6); 852-857.
Peña, C., Castillo, T., García, A., Millán, M., and Segura, D. (2014). Biotechnological strategies to improve production of microbial poly‐(3‐hydroxybutyrate): a review of recent research work. Microbial biotechnology, 7 (4), 278-293. Doi: 10.1111/1751-7915.12129.
Ratnaningrum, D., Saraswaty, V., Priatni, S., Lisdiyanti, P., Purnomo, A., and Pudjiraharti, S. (2019). Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains. In IOP Conference Series: Earth and Environmental Science. 277(1); 012003. DOI:10.1088/1755-1315/277/1/012003
Sadasivam, S., Sigamani, S., Venkatachalam, H., and Ramamurthy, D. (2018). A New Method for the Production of Polyhydroxyalkanoates by Bacillus sp. and Detect the Presence of PHA Synthase. Smart Science, 6(2), 105-116. https://doi.org/10.1080/23080477.2018.1437332
Tufail, S., Munir, S., & Jamil, N. (2017). Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Brazilian journal of microbiology. 48 (4) : 629-636. https://doi.org/10.1016/j.bjm.2017.02.008
Urtuvia, V., Villegas, P., González, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International journal of biological macromolecules. 70: 208-213. Doi: 10.1016/j.ijbiomac.2014.06.001
Yustinah, N., Hidayat, R., Alamsyah, A. M., Roslan, H., Hermansyah, & Gozan, M. (2019). Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001. Biocatalysis and Agricultural Biotechnology. 18 : 101-19. https://doi.org/10.1016/j.bcab.2019.01.057
DOI: http://dx.doi.org/10.22373/ekw.v8i1.11145
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Nur Hedar, Donny Suherman, Zaraswati Dwyana, Heriadi, Mashuri Masri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
P-ISSN : 2460-8912
E-ISSN : 2460-8920
ELKAWNIE
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.
View full page view stats report click here