REMOVAL OF Cd2+ IN WASTEWATER USING ZEOLITIC IMIDAZOLATE FRAMEWORK-8 (ZIF-8) AS SYNTHESIS ADSORBENT

Rahmatul Fajri, Fira Asfahani, Yulida Amri, Jofrishal Jofrishal

Abstract


Zeolitic Imidazole Framework-8 (ZIF-8) has been synthesized by dissolving Zn(NO3)2.4H2O and 2-MeIM into a methanol solvent and solvothermal method. The synthesized ZIF-8 will be applied as a cadmium (Cd) adsorbent in Polluted water. Several characterization methods were conducted, including XRD, FTIR, and AAS. The XRD analysis shows that the prominent characteristic peaks of ZIF-8 at an angle of 2θ = 7,25o; 10,26o; 12,57o; 16,22o; and 17,86o. At the same time, the FTIR analysis showed the presence of functional groups of Zn-N, C-N, C=N, C=C, and C-H on aromatic 2-Methyl Immidazole  as an indication that ZIF-8 has been completely established. Based on the result, the AAS method performed to analyze ZIF-8 ability to adsorb Cd in the water showed that Cd ions adsorption increased at pH 6 and 8 while decreasing at pH 7.


Keywords


Cd, Adsorption, Adsorbent, ZIF-8

Full Text:

PDF

References


Adewumi, A. J., Laniyan, T. A., & Ikhane, P. R. (2021). Distribution, contamination, toxicity, and potential risk assessment of toxic metals in media from Arufu Pb–Zn–F mining area, northeast Nigeria. Toxin Reviews, 40(4), 997–1018. https://doi.org/10.1080/15569543.2020.1815787

Aulia, W., Ahnaf, A., Irianto, M. Y., Ediati, R., Iqbal, R. M., Rachman, R. A., & Martia, U. T. I. (2020). Synthesis and Characterization of Zeolitic Imidazolate Framework-8 (ZIF-8)/Al2O3 Composite. IPTEK The Journal for Technology and Science, 31(1), 18. https://doi.org/10.12962/j20882033.v31i1.5511

Binaeian, E., Maleki, S., Motaghedi, N., & Arjmandi, M. (2020). Study on the performance of Cd2+ sorption using dimethylethylenediamine-modified zinc-based MOF (ZIF-8-mmen): optimization of the process by RSM technique. Separation Science and Technology (Philadelphia), 55(15), 2713–2728. https://doi.org/10.1080/01496395.2019.1655056

Bui, N. T., Kang, H., Teat, S. J., Su, G. M., Pao, C., Liu, Y., Zaia, E. W., Guo, J., Chen, J., Meihaus, K. R., Dun, C., Mattox, T. M., Long, J. R., Fiske, P., Kostecki, R., & Urban, J. J. (2020). A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water. Nature Communications. https://doi.org/10.1038/s41467-020-17757-6

He, M., Yao, J., Liu, Q., Wang, K., Chen, F., & Wang, H. (2014). Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 184, 55–60. https://doi.org/10.1016/j.micromeso.2013.10.003

Huang, Y., Zeng, X., Guo, L., Lan, J., Zhang, L., & Cao, D. (2018). Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Separation and Purification Technology, 194 (November 2017), 462–469. https://doi.org/10.1016/j.seppur.2017.11.068

Jian, M., Liu, B., Zhang, G., Liu, R., & Zhang, X. (2015). Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 67–76. https://doi.org/10.1016/j.colsurfa.2014.10.023

Jiang, H. L., Feng, D., Wang, K., Gu, Z. Y., Wei, Z., Chen, Y. P., & Zhou, H. C. (2013). An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. Journal of the American Chemical Society, 135(37), 13934–13938. https://doi.org/10.1021/ja406844r

Jofrishal, Fajri, R., Ediati, R., & Amri, Y. (2020). Synthesis of ZIF-8 at room temperature and reuse filtrate. Journal of Physics: Conference Series, 1460(1). https://doi.org/10.1088/1742-6596/1460/1/012086

Li, K., Miwornunyuie, N., Chen, L., Jingyu, H., Amaniampong, P. S., Koomson, D. A., Ewusi-Mensah, D., Xue, W., Li, G., & Lu, H. (2021). Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions. Sustainability (Switzerland), 13(2), 1–11. https://doi.org/10.3390/su13020984

Malkoc, E., & Nuhoglu, Y. (2005). Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 127(1–3), 120–128. https://doi.org/10.1016/j.jhazmat.2005.06.030

Megasari, K., Herdiyanti, H., Nurliati, G., Kadarwati, A., & Swantomo, D. (2019). Sintesis Silika Xerogel Dari Abu Daun Bambu Sebagai Adsorben Uranium. Jurnal Forum Nuklir (JFN), 13(1), 27–36.

Nadifah, L., & Ediati, R. (2015). Pengaruh Perbandingan Logam-Ligan dalam Sintesis. Jurnal Sains Dan Seni ITS, 4(1), 2337–3520.

Ordoñez, M. J. C., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 361(1–2), 28–37. https://doi.org/10.1016/j.memsci.2010.06.017

Pap, S., Radonić, J., Trifunović, S., Adamović, D., Mihajlović, I., Vojinović Miloradov, M., & Turk Sekulić, M. (2016). Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. Journal of Environmental Management, 184, 297–306. https://doi.org/10.1016/j.jenvman.2016.09.089

Ping, Q., Cohen, B., Dosoretz, C., & He, Z. (2013). Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells. Desalination, 325, 48–55. https://doi.org/10.1016/j.desal.2013.06.025

Purnamawati, F. S., Soeprobowati, T. R., & Izzati, M. (2015). Potential of Chlorella vulgaris Beijerinck in Laboratory Scale Cd and Pb Heavy Metal Remediation. Bioma, 16(2), 102–113.

Rahman, N., Kimia, P., & Indonesia, P. (2012). Adsorpsi Timbal ( Pb ) Dan Zink ( Zn ) Dari Larutannya Menggunakan Arang Hayati ( Biocharcoal ) Kulit Pisang Kepok Berdasarkan Variasi Ph Adsorption of Plumbum ( Pb ) and Zinc ( Zn ) From Its The Solution by Using Biological Charcoal ( Biocharcoal ) of Ke. 1(November), 159–165.

Riani, E., Johari, H. S., & Cordova, M. R. (2017). Bioakumulasi Logam Berat Kadmium Dan Timbal Pada Kerang Kapak-Kapak Di Kepulauan Seribu. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(1), 131. https://doi.org/10.17844/jphpi.2017.20.1.131

Riskirana, R. (2018). Efektifitas Arang Sekam Padi Dan Ampas Kelapa Kering Dalam Menurunkan Kadar Timbal Pada Air Sumur. Jurnal Media Kesehatan, 7(1), 37–43. https://doi.org/10.33088/jmk.v7i1.221

Side, S., & Herawati, N. (n.d.). Kapasitas Adsorpsi Arang Aktif Kulit Singkong terhadap Ion Logam Adsorption Capacity of Active Charcoal of Cassava Peel to Pb 2+ Ion. 58–65.

Stiyati Prihatini, N., & Syauqiah, I. (2017). Effect Of Variation Of Ph And Adsorbent Weight In Cr Total Reduction In Artificially Waste Using Tea Leaves Dregs Adsorbents. Jukung Jurnal Teknik Lingkungan, 3(1), 56–65.

Tan, P. C., Ooi, B. S., Ahmad, A. L., & Low, S. C. (2017). Size control and stability study of zeolitic imidazolate framework-8 to prepare mixed matrix membrane. Journal of Physical Science, 28, 215–226. https://doi.org/10.21315/jps2017.28.s1.14

Thanh, M. T., Thien, T. V., Du, P. D., Hung, N. P., & Khieu, D. Q. (2018). Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. Journal of Porous Materials, 25(3), 857–869. https://doi.org/10.1007/s10934-017-0498-7

Wijaya, V. C., & Ulfin, I. (2015). Pengaruh pH pada Adsorpsi Ion Cd 2 + dalam Larutan Menggunakan Karbon Aktif dari Biji Trembesi (Samanea saman). Jurnal Sains Dan Seni ITS, 4(2), 4–7. ejurnal.its.ac.id/index.php/sains_seni/article/download/12802/2402

Zhang, Y., Xie, Z., Wang, Z., Feng, X., Wang, Y., & Wu, A. (2016). Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Transactions, 45(32), 12653–12660. https://doi.org/10.1039/c6dt01827k




DOI: http://dx.doi.org/10.22373/lj.v11i1.17831

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rahmatul atul Fajri, Fira Fira Asfahani, Yulida Yulida Amri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

INDEXED IN