PENGARUH PEMBERIAN EKSTRAK DAUN BELALAI GAJAH TERHADAP KADAR MALONDIALDEHID DAN SUPEROKSIDA DISMUTASE PADA TIKUS DENGAN AKTIVITAS TINGGI

Jesslyn Felix, Tan Suyono, Linda Chiuman

Abstract


Clinacanthus nutans Lindau is known as the elephant trunk leaf which belongs to the Acanthaceae family. C. nutans can act as an antioxidant by reducing free radicals from the mitochondrial electron transport chain in the cell membrane. In this study, elephant trunk leaves will be studied regarding their content and antioxidant activity and their association with free radicals/Reactive Oxygen Species (ROS), which are compounds that are highly reactive. ROS can cause damage to cell integrity and functional cell disruption. Free radical reduction prevents lipid oxidation, which then reduces malondialdehyde (MDA) levels. By potentiating the antioxidant properties of Superoxide Dismutase (SOD) and reducing lipid peroxidation, C. nutans can reduce oxidative stress. The purpose of this study was to evaluate the effect of elephant trunk leaf extract on malondialdehyde and superoxide dismutase levels in rats with high activity. The research method used was laboratory experimental research with a Randomized Posttest Only with Control Group Design. In this study, 25 male white rats of the Wistar strain were divided into 5 groups: normal, negative control, and treatment I, II, III which were given elephant trunk leaf extract at successive doses of 50, 300, and 2000 mg/kg BW ( Weight). and high activity for 14 days. MDA measurements using a spectrophotometer and SOD using calorimetry were carried out after 14 days. The results showed that elephant trunk leaf extract reduced MDA levels and increased SOD activity in the blood plasma of rats induced by high activity (P value <0.05).


Keywords


Elephant Trunk Leaf Extract, MDA, SOD, High Activities

Full Text:

PDF

References


Abramov, A. Y., Scorziello, A., & Duchen, M. R. (2007). Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. Journal of Neuroscience, 27(5), 1129–1138.

Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi, A. S., Khatib, A., & Sarker, Z. I. (2016). Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pacific Journal of Tropical Medicine, 9(4), 402–409.

Case, A. J. (2017). On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling. Antioxidants, 6(4), 82.

Hu, J.-P., Zhao, X.-P., Ma, X.-Z., Wang, Y., & Zheng, L.-J. (2014). Effects of cigarette smoke on aerobic capacity and serum MDA content and SOD activity of animal. International Journal of Clinical and Experimental Medicine, 7(11), 4461.

Kim, J., Mizokami, A., Shin, M., Izumi, K., Konaka, H., Kadono, Y., Kitagawa, Y., Keller, E. T., Zhang, J., & Namiki, M. (2014). SOD3 acts as a tumor suppressor in PC-3 prostate cancer cells via hydrogen peroxide accumulation. Anticancer Research, 34(6), 2821–2831.

Kim, S.-H., Kim, S.-H., Lee, J.-H., Lee, B.-H., Yoon, H. J., Shin, D. H., Park, S. S., Jang, S. Bin, Park, J.-S., & Jee, Y.-K. (2015). Superoxide dismutase gene (SOD1, SOD2, and SOD3) polymorphisms and antituberculosis drug-induced hepatitis. Allergy, Asthma & Immunology Research, 7(1), 88–91.

Liu, Z., Ren, Z., Zhang, J., Chuang, C.-C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology, 9, 477.

Ng, P. Y., Chye, S. M., Ng, C. H., Koh, R. Y., Tiong, Y. L., Pui, L. P., Tan, Y. H., Lim, C. S. Y., & Ng, K. Y. (2017). Clinacanthus nutans hexane extracts induce apoptosis through a caspase-dependent pathway in human cancer cell lines. Asian Pacific Journal of Cancer Prevention: APJCP, 18(4), 917.

Nik-Mohd-Afizan, N. A. R., Zeenathul, N. A., Noordin, M. M., Ruzila, I., NorHidayah, M., & Mohd-Azmi, M. L. (2011). Apoptosis and tumour cell death in response to pro-apoptotic gene. Pertanika J Trop Agric Sci, 34(1), 163–166.

Pillon, N. J., & Soulage, C. O. (2012). Lipid peroxidation by-products and the metabolic syndrome. Lipid Peroxidation, 409–436.

Pingitore, A., Lima, G. P. P., Mastorci, F., Quinones, A., Iervasi, G., & Vassalle, C. (2015). Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition, 31(7–8), 916–922.

Rochmah, W. W. (2017). Pengaruh Pemberian Sari Buah Kurma (Phoenix dactylifera) Terhadap Kadar Malondialdehid (MDA) Mencit Balb/c yang Dipapar Asap Rokok.

Salsabila, A. E. (2022). Analisis potensi antidiabetik senyawa palmitic acid melalui aktivasi AMPK secara in silico. Universitas Islam Negeri Maulana Malik Ibrahim.

Situmorang, N., & Zulham, Z. (2020). Malondialdehyde (mda)(zat oksidan yang mempercepat proses penuaan). Jurnal Keperawatan Dan Fisioterapi (JKF), 2(2), 117–123.

Suyatmi, S. C., & DR, P. (2019). Uji Fitokimia dan Uji Aktivitas Antioksidan (Metode DPPH) Dari Daun Rambai (BaccaureamotleyanaMull. Arg). Jurnal Atomik, 4(2), 96–99.

Tan, B. L., Norhaizan, M. E., Liew, W.-P.-P., & Sulaiman Rahman, H. (2018). Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in Pharmacology, 9, 1162.

Turner, J. E., Hodges, N. J., Bosch, J. A., & Aldred, S. (2011). Prolonged depletion of antioxidant capacity after ultraendurance exercise. Medicine and Science in Sports and Exercise, 43(9), 1770–1776.

Williams, M. H. (2005). Dietary supplements and sports performance: minerals. Journal of the International Society of Sports Nutrition, 2, 1–7.

Yavari, S. A., Ahmadi, S. M., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., & Zadpoor, A. A. (2015). Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 43, 91–100.

Yuslianti, E. R. (2018). Pengantar radikal bebas dan antioksidan. Deepublish.

Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33(3), 337–349.




DOI: http://dx.doi.org/10.22373/lj.v11i2.19116

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jesslyn Felix, Tan Suyono, Linda Chiuman

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

INDEXED IN