Saharman Gea, Vivi Purwandari


The fabrication of phase-changed composite (PCC) utilized to store thermal energy through encapsulation has been performed by utilizing the stearate acid (SA) and modified graphene (mG) with sentrimoinum bromide (CTAB). The composite was fabricated via latex method, while the liquid SA was able to be encapsulated and stabilized due to the presence of mG. The active phase of SA altered to be a thermal storing site obtained from latent heat, while the mG wall has protective features which can prevent the leakage of SA core during the transition phase. The active phase itself increased the thermal conductivity from 4.93 W/mK to 7.65 W/mK with maximum storing energy for 84.8%. The stable form of mG was measured extremely low for 2 phr with an average particle size of 13.68 nm. Thus, mG wall has excellent thermal stability and effective protection in shielding the SA core which improves the thermal properties of the composite.


Nanoencapsulation; Graphene; Active Site Phase; Phase-changed Composit; Nanoemulsion

Full Text:



Abuibaid, A. Z., & Iqbal, M. Z. (2020). Thermally reduced graphene/polyethylene nanocomposites: effects of graphene on isothermal and nonisothermal crystallization of polyethylene. Heliyon, 6(3), e03589.

Azizi, M., & Honarvar, B. (2018). Investigation of thermophysical properties of nanofluids containing poly (vinyl alcohol)-functionalized graphene. Journal of Thermal Analysis and Calorimetry, 133(3), 1259-1269.

Assadpour, E., & Jafari, S. M. (2019). Nanoencapsulation: Techniques and Developments for Food Applications. In Nanomaterials for food applications (pp. 35-61). Elsevier.

Bhagyalakshmi, P., Rajan, K., & Kumar, K. S. (2018). Experimental study on solar energy storage using phase change materials in spherical shell storage system. Oriental Journal of Chemistry, 34(1), 507-512.

Chen, J.-T. Fu, Y.-J. An, Q.-F. Lo, S.-C. Zhong, Y.-Z. Hu, C.-C. et al., (2014), Enhancing polymer/ graphene oxide gas barrier film properties by introducing new crystals, Carbon 75 443-451.

Dao, T.D. Jeong, H.M. (2015), Novel stearic acid/graphene coreeshell composite microcapsule as a phase change material exhibiting high shape stability and performance, Sol. Energy Mater. Sol. Cells 137 227-234.

Dao, T.D. Lee, H.-i. Jeong, H.M. Kim, B.K., (2013), Direct covalent modication of thermally exfoliated grapheme forming functionalized grapheme stably dispersible in water and poly(vinyl alcohol), Colloid Polym. Sci. 291 2365–2374.

Haghdadeh, P., Ghaffari, M., Ramezanzadeh, B., Bahlakeh, G., & Saeb, M. R. (2018). The role of functionalized graphene oxide on the mechanical and anti-corrosion properties of polyurethane coating. Journal of the Taiwan Institute of Chemical Engineers, 86, 199-212.

Jing, X., Mi, H. Y., Peng, X. F., & Turng, L. S. (2018). Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon, 136, 63-72.

Kalnæs, S.E. Jelle, B.P. (2015), Phase change materials and products for building applications: a state-of-the-art review and future research opportunities, Energy Build. 94, 150-176.

Kwon, S. R., Harris, J., Zhou, T., Loufakis, D., Boyd, J. G., & Lutkenhaus, J. L. (2017). Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS nano, 11(7), 6682-6690.

Ling, Z. Zhang, Z. Shi, G. Fang, X. Wang, L. Gao, X. et al., (2014), Review on thermal management systems using phase change materials for electronic components, li-ion batteries and photovoltaic modules, Renew. Sustain. Energy Rev. 31, 427-438.

Liu, C, Li, F. Ma, L.-P. Cheng, H.-M., (2010), Advanced materials for energy storage, Adv. Mater. 22 E28-E62.

Li, Y., Yu, C., Gan, Y., Kong, Y., Jiang, P., Zou, D. F., ... & Gao, C. F. (2019). Elastic properties and intrinsic strength of two-dimensional InSe flakes. Nanotechnology, 30(33), 335703.

Li, Y. Samad, Y.A. Polychronopoulou, K. Alhassan, S.M. Liao, K. (2014), From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials, J. Mater. Chem. A 2 7759-7765.

Pierleoni, D. Xia, Z.Y. Christian, M. Ligi, S. Minelli, M. Morandi, V. et al., (2016), Graphene-based coatings on polymer films for gas barrier applications, I 96, 503-512.

Purwandari, V, Gea, S, Wirjosentono, B., Haryono, A., (2019), Functionalization of Graphene from Sawahlunto Coal Graphite with Cethyltrimethyl ammonium bromide as a Nanofiller in Cyclic Natural Rubber Matrix, Thesis for: Doctor.

Purwandari, V., Gea, S., Wijosentono, B. (2019), Analisa XRD Terhadap Perubahan Struktur Dan Kristalinitas Karbonisasi Batubara Sawahlunto–Sijunjung Sumatera Barat. In Talenta Conference Series: Science and Technology (ST) (Vol. 2, No. 1, pp. 88-91).

Purwandari,V, Gea, S, Wirjosentono, B, Haryono, A, Rahayu, S, Hutapea, Y, (2020), The Exfoliation Process of Sawahlunto Coal into Graphene through The Modified Hummer Method, Rasayan Journal of Chemistry 13 (No.1) 593-600, DOI : 10.31788/RJC.2020.1315473

Purwandari, V., Gea, S., Wirjosentono, B., & Haryono, A. (2018). Synthesis of graphene oxide from the Sawahlunto-Sijunjung coal via modified hummers method. In AIP Conference Proceedings (Vol. 2049, No. 1, p. 020065). AIP Publishing LLC.

Sharif, M.K.A. Al-Abidi, A.A. Mat, S. Sopian, K. Ruslan, M.H. Sulaiman, M.Y., (2015) Review of the application of phase change material for heating and domestic hot water systems, Renew. Sustain. Energy Rev. 42, 557-568.

Wang, T., Quinn, M. D., Nguyen, S. H. T., Yu, A., & Notley, S. M. (2016). Graphene films using a thermally curable surfactant. Advanced Materials Interfaces, 3(15), 1600182.

Wang, S. Qin, P. Fang, X. Zhang, Z. Wang, S. Liu, X. (2014), A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications, Sol. Energy 99, 283-290.

Wu, S., Yan, T., Kuai, Z., & Pan, W. (2020). Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Materials, 25, 251-295.

Yoo, B.M. Shin, H.J. Yoon, H.W. Park, H.B. (2014), Graphene and graphene oxide and their uses in barrier polymers, J. Appl. Polym. Sci. 13 39628.

Yousefi, N. Gudarzi, M.M. Zheng, Q. Lin, X. Shen, X. Jia, J. et al., (2013), Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability, Compos. Appl. Sci. Manuf. 49 42-50.

Zeng, J.-L. Gan, J. Zhu, F.-R. Yu, S.-B. Xiao, Z.-L. Yan, W.-P. et al., (2014) Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 127 122-128.

Zhong, Y. Zhou, M. Huang, F. Lin, T. Wan, D. (2013), Effect of graphene aerogel on thermal behavior of phase change materials for thermal management, Sol. Energy Mater. Sol. Cells 113, 195-200.



  • There are currently no refbacks.

Copyright (c) 2020 Saharman Gea, Vivi Purwandari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.