Nitrogen-Doped Carbon Dots From Bilimbi Juice (Averrhoa bilimbi L.) Via Hydrothermal Method For Iron and Mercury Sensing

Averroes Fazlur Rahman Piliang, Kerista Tarigan, Syahrul Humaidi, Diana Alemin Barus, Saharman Gea


Abstract: Carbon dots (CDs) have been widely used in various applications, one of them being metal ion sensing. Synthesizing CDs with sensing characteristics is influenced by two factors, i.e., precursor and dopant agent. This study aims to use bilimbi (Averrhoa bilimbi) with N, N-dimethylformamide (DMF) as a nitrogen source to synthesize CDs via the hydrothermal method. The result of hydrothermal showed significant colors of CDs with and without the presence of nitrogen, and these behaviors were also confirmed by the differential absorption of the CDs, with λmax of absorption at 291 nm. FTIR spectra confirmed the presence of functional groups related to CDs, such as C-H, C=H, C=N, C=O, C-O-C, and NH2. Meanwhile, emission spectra displayed fluorescent emission at λmax 495 nm (DMF 2%) and 491 nm (DMF 4%). The ion metal sensing test showed that these two samples with 2% and 4% of DMF were sensitive to Fe3+ and Hg2+ sensing. These characteristics concluded that NCDs from bilimbi juice via hydrothermal method were able in sensing metal ions, such as Fe3+ and Hg2+.

Abstrak: Karbon dots (CDs) telah banyak diterapkan pada berbagai penggunaan, salah satunya adalah sebagai alat pendeteksi ion logam. Sintesis Cds dengan kemampuan mendeteksi dipengaruhi oleh dua faktor, yaitu prekursor dan agen dopant. Penelitian ini bertujuan untuk menggunakan asam belimbing wuluh (Averrhoa bilimbi) dengan penambahan N, N dimetilformamida (DMF) sebagai sumber nitrogen sebagai bahan sintesis CDs melalui metode hidrotermal. Hasil hidrotermal menunjukkan perbedaan emisi warna dari CDs dengan dan tanpa penambahan DMF, dan karakteristik ini juga ditunjukkan dengan adanya perbedaan penyerapan panjang gelombang maksimum (λmax) di 291 nm. Spektra FTIR juga mengkonfirmasi adanya gugus fungsi terkait dengan CDs, seperti C-H, C=H, C=N, C=O, C-O-C, dan NH2. Sementara itu, emisi spekra menunjukkan emisi fluorosensi pada λmax sebesar 495 nm (DMF 2%0, dan 491 nm (DMF 4%). Pendeteksian ion logam pada kedua sampel sensitif pada ion Fe3+ dan Hg2+. Karakteristik ini menyimpulkan bahwa NCDs dari jus asam belimbing dapat digunakan sebagai alat pendeteksi ion logam dalam air, khususnya pada ion logam besi dan merkuri.


Carbon dots; bilimbi; nitrogen doping; metal ion sensing

Full Text:



Bhatt, S., Bhatt, M., Kumar, A., Vyas, G., Gajaria, T., & Paul, P. (2018). Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Colloids and Surfaces B: Biointerfaces, 167(Vi), 126–133.

Cai, W., Zhang, T., Xu, M., Zhang, M., Guo, Y., Zhang, L., Street, J., Ong, W. J., & Xu, Q. (2019). Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 7(8), 2212–2218.

Chen, Y., Zheng, M., Xiao, Y., Dong, H., Zhang, H., Zhuang, J., Hu, H., Lei, B., & Liu, Y. (2016). A Self-Quenching-Resistant Carbon-Dot Powder with Tunable Solid-State Fluorescence and Construction of Dual-Fluorescence Morphologies for White Light-Emission. Advanced Materials, 28(2), 312–318.

D’Angelis Do E. S. Barbosa, C., Corrêa, J. R., Medeiros, G. A., Barreto, G., Magalhães, K. G., de Oliveira, A. L., Spencer, J., Rodrigues, M. O., & Neto, B. A. D. (2015). Carbon Dots (C-dots) from Cow Manure with Impressive Subcellular Selectivity Tuned by Simple Chemical Modification. Chemistry - A European Journal, 21(13), 5055–5060.

Gayen, B., Palchoudhury, S., & Chowdhury, J. (2019). Carbon dots: A mystic star in the world of nanoscience. Journal of Nanomaterials, 2019.

Hoan, B. T., Tam, P. D., & Pham, V. H. (2019). Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Journal of Nanotechnology, 2019.

Holá, K., Sudolská, M., Kalytchuk, S., Nachtigallová, D., Rogach, A. L., Otyepka, M., & Zbořil, R. (2017). Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano, 11(12), 12402–12410.

Jia, X., Li, J., & Wang, E. (2012a). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18).

Jia, X., Li, J., & Wang, E. (2012b). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572–5575.

Jung, Y. K., Shin, E., & Kim, B.-S. (2016). Cell Nucleus-Targeting Zwitterionic Carbon Dots. Scientific Reports, 5(1), 18807.

Kumari, R., Pal, K., Karmakar, P., & Sahu, S. K. (2019). PH-Responsive Mn-Doped Carbon Dots for White-Light-Emitting Diodes, Fingerprinting, and Bioimaging [Research-article]. ACS Applied Nano Materials, 2(9), 5900–5909.

Li, Y., Ren, J., Sun, R., & Wang, X. (2018). Fluorescent lignin carbon dots for reversible responses to high-valence metal ions and its bioapplications. Journal of Biomedical Nanotechnology, 14(9), 1543–1555.

Liu, S., Liu, R., Xing, X., Yang, C., Xu, Y., & Wu, D. (2016). Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron(III) ion. RSC Advances, 6(38), 31884–31888.

Marpongahtun, Gea, S., Muis, Y., Andriayani, Novita, T., & Piliang, A. F. (2018). Synthesis of Carbon Nanodots from Cellulose Nanocrystals Oil Palm Empty Fruit by Pyrolysis Method. Journal of Physics: Conference Series.

Muthurasu, A., & Ganesh, V. (2021). Tuning optical properties of nitrogen-doped carbon dots through fluorescence resonance energy transfer using Rhodamine B for the ratiometric sensing of mercury ions. Analytical Methods, 13(15), 1857–1865.

Rai, S., Singh, B. K., Bhartiya, P., Singh, A., Kumar, H., Dutta, P. K., & Mehrotra, G. K. (2017). Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. Journal of Luminescence, 190, 492–503.

Sharma, V., Tiwari, P., & Mobin, S. M. (2017). Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. Journal of Materials Chemistry B, 5(45), 8904–8924.

Shen, J., Shang, S., Chen, X., Wang, D., & Cai, Y. (2017). Facile synthesis of fluorescence carbon dots from sweet potato for Fe 3 + sensing and cell imaging. Materials Science and Engineering C.

Shi, J., Lu, C., Yan, D., & Ma, L. (2013). High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosensors and Bioelectronics, 45(1), 58–64.

Shi, Y., Liu, X., Wang, M., Huang, J., Jiang, X., Pang, J., Xu, F., & Zhang, X. (2019). Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. International Journal of Biological Macromolecules, 128, 537–545.

Suluvoy, J. K., & Berlin Grace, V. M. (2017). Phytochemical profile and free radical nitric oxide (NO) scavenging activity of Averrhoa bilimbi L. fruit extract. 3 Biotech, 7(1), 1–11.

Sun, D., Ban, R., Zhang, P. H., Wu, G. H., Zhang, J. R., & Zhu, J. J. (2013). Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon, 64, 424–434.

Wang, H., Sun, C., Chen, X., Zhang, Y., Colvin, V. L., Rice, Q., Seo, J., Feng, S., Wang, S., & Yu, W. W. (2017). Excitation wavelength independent visible color emission of carbon dots. Nanoscale, 9(5), 1909–1915.

Wang, R., Wang, X., & Sun, Y. (2017). One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors and Actuators, B: Chemical, 241, 73–79.

Wang, W., Kim, T., Yan, Z., Zhu, G., Cole, I., Nguyen, N. T., & Li, Q. (2015). Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. Journal of Colloid and Interface Science, 437, 28–34.

Yahyazadeh, E., & Shemirani, F. (2019). Easily synthesized carbon dots for determination of mercury(II)in water samples. Heliyon, 5(5), e01596.

Zhou, J., Sheng, Z., Han, H., Zou, M., & Li, C. (2012). Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Materials Letters, 66(1), 222–224.

Zulfajri, M., Dayalan, S., Li, W. Y., Chang, C. J., Chang, Y. P., & Huang, G. G. (2019). Nitrogen-doped carbon dots from averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors (Switzerland), 19(22).



  • There are currently no refbacks.

Copyright (c) 2022 Averroes Piliang, Kerista Tarigan, Syahrul Humaidi, Diana Alemin Barus, Saharman Gea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter