UV-C Technology to Support Air Quality For Safety Work and Security From Biological Agent Threats

Lilik Mugiharto, Aries Sudiarso, Luhut Simbolon, Suparlan Suparlan, Wely Pasadena

Abstract


Abstract: The UV-C-based air disinfection device is the equipment used for air disinfection whose working principle uses UV-C radiation to inactivate microorganisms. This study aimed to determine the effectiveness of UV-C devices for disinfection in the indoor air at the workspace and the safety of humans in the room from being exposed to UV-C radiation when the disinfectant is operating. The research used quantitative methods through laboratory experiments. The working principle of the UV-C device is to circulate air in the room through a chamber equipped with a UV-C radiation source from an electric lamp with a wavelength of 254 nm. Laboratory tests were carried out with the Total Plate Count (TPC) parameter to determine its effectiveness by measuring the number of conditions before and after treatment. The average effectiveness value at 30 minutes was 64.14% and at 60 minutes it was 86.26%, so the effect increased with time. In terms of the dangers of UV-C radiation, UV-C devices are safe to use with designs and engineering that can prevent or minimize UV-C radiation outside the device. The radiation in human skin is not beyond the specified allowed. The result of measuring UV-C radiation in the workspace was 0.000 μW/cm2. UV-C technology can be used as a defense tool against biological agents effectively and safely.

Abstrak: Perangkat disinfeksi udara berbasis UV-C merupakan alat yang digunakan untuk disinfeksi udara yang prinsip kerjanya menggunakan radiasi sinar UV-C untuk menonaktifkan mikro organisme. Tujuan penelitian ini adalah menentukan efektifitas perangkat UV-C pada disinfeksi mikroorganisme di udara dalam ruang kerja dan menentukan keamanan terhadap manusia yang berada di dalam ruangan dari paparan radiasi sinar UV-C pada saat disinfektor beroperasi. Prinsip kerja perangkat UV-C adalah mensirkulasikan udara pada ruangan untuk melalui chamber yang telah dilengkapi dengan sumber radiasi UV-C yang berasal dari lampu elektrik dengan panjang gelombang 254 nm. Dilakukan uji laboratorium dengan parameter Total Plate Count (TPC) untuk mengetahui efektifitasnya dengan mengukur jumlah kondisi sebelum dan sesudah sehingga diperoleh nilai rata-rata efektifitas pada 30 menit adalah 64,14% dan 60 menit adalah 86,26% sehingga efektifitas naik dengan ditambahnya waktu. Perangkat UV-C dari segi bahaya radiasi UV-C aman digunakan dengan desain yang dapat mencegah/meminimalisir radiasi UV-C sehingga tidak sampai pada kulit manusia melebihi nilai ambang batas yang ditentukan. Hasil ukur radiasi UV-C di ruang kerja adalah 0,000 μW/cm2. Teknologi UV-C dapat digunakan sebagai alat pertahanan terhadap agensia biologi dengan efektif dan aman.

 


Keywords


Air Disinfection; UV-C; Total Plate Count

Full Text:

PDF

References


Affifudin, M. (2019). Melaksanakan Prosedur Kesehatan dan Keselamatan Kerja (1st ed.). CV Sarnu Untung.

Anderson, J. G., Rowan, N. J., MacGregor, S. J., Fouracre, R. A., & Farish, O. (2000). Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Transactions on Plasma Science, 28(1), 83–88. https://doi.org/10.1109/27.842870

Arjani, I. A. M. S. (2011). Kualitas Udara Dalam Ruang Kerja. Jurnal Skala Husada, 8(2), 172–177.

Biasin, M., Bianco, A., Pareschi, G., Cavalleri, A., Cavatorta, C., Fenizia, C., ... & Clerici, M. (2021). UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Scientific Reports, 11(1), 1-7.

Brickner, P. W., Vincent, R. L., First, M., Nardell, E., Murray, M. M., & Kaufman, W. (2003). The Application of Ultraviolet Germicidal Irradiation to Control Transmission of Airborne Disease : Bioterrorism Countermeasure. Public Health Reports, 118, 99–114. https://doi.org/10.1093/phr/118.2.99

Duizer, E., Bijkerk, P., Rockx, B., Groot, A. De, Twisk, F., & Koopmans, M. (2004). Inactivation of Caliciviruses. American Society for Microbiology, 70(8), 4538–4543. https://doi.org/10.1128/AEM.70.8.4538

Hasibuan, A., Purba, B., Wahyudin, I. M., Sianturi, R., Chaerul, S. G. M., Efbertias, S., Khariri, Bachtiar, E., Susilawaty, A., & Jamaludin. (2020). Teknik Keselamatan dan Kesehatan Kerja. Yayasan Kita Menulis. https://kitamenulis.id/2020/11/16/teknik-keselamatan-dan-kesehatan-kerja/

Hu, Y., Cheng, H., & Tao, S. (2017). Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment international, 107, 111-130.

ISO 14698-1, Pub. L. No. ISO 14698-1, 6 61010-1 © Iec:2001 13 (2003).

ISO-15858, 2016 (2016).

Kowalski, W. (2009). Ultraviolet Germical Irradiation. In Springer (Vol. 53, Issue 9). Springer. https://doi.org/10.1007/978-3-642-01999-9_2

Leung, N. H. (2021). Transmissibility and transmission of respiratory viruses. Nature Reviews Microbiology, 19(8), 528-545.

Lin, C. Y., & Li, C. S. (2002). Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Science and Technology, 36(4), 474–478. https://doi.org/10.1080/027868202753571296

Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., ... & Lan, K. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582(7813), 557-560.

Peraturan Menteri Tenaga Kerja dan Transmigrasi Republik Indonesia Nomor Per.13/MEN/X/2011 tentang Nilai Ambang Batas Faktor Fisika dan Faktor Kimia di Tempat Kerja, (2011).

Menzies, D., Pasztor, J., Rand, T., & Bourbeau, J. (1999). Germicidal ultraviolet irradiation in air conditioning systems: effect on office worker health and wellbeing: a pilot study. Occupational Environ, 56(6), 397–402.

Morawska, L., Tang, J. W., Bahnfleth, W., Bluyssen, P. M., Boerstra, A., Buonanno, G., Cao, J., Dancer, S., Floto, A., Franchimon, F., Haworth, C., Hogeling, J., Isaxon, C., Jimenez, J. L., Kurnitski, J., Li, Y., Loomans, M., Marks, G., Marr, L. C., … Yao, M. (2020). How can airborne transmission of COVID-19 indoors be minimised? Environment International, 142(April). https://doi.org/10.1016/j.envint.2020.105832

Morey, P. R., Horner, E., Epstien, B. L., Worthan, A. G., & Black, M. S. (2001). Indoor Air Quality In Nonindustrial Occupational Environments. Patty’s Industrial Hygiene. https://doi.org/10.1002/0471435139.hyg065

Noorimotlagh, Z., Jaafarzadeh, N., Martínez, S. S., & Mirzaee, S. A. (2021). A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment. Environmental Research, 193, 110612.

Rejeki, S. (2016). Kesehatan dan Keselamatan Kerja (I). Kementrian Kesehatan Republik Indonesia.

Rinaldi, R. S., & Anggraini, I. N. (2021). Perancangan Sistem Disinfektan UV-C Sterilisasi Paket sebagai Pencegahan Penyebaran Covid-19 ( Design of Package Sterilization UV-C Disinfectant Systems to Prevent the Spread of Covid-19 ). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 10(1), 57–62.

SNI 16-7060-2004, Pub. L. No. ICS 17.240 (2004).

Tang, S., Mao, Y., Jones, R. M., Tan, Q., Ji, J. S., Li, N., ... & Shi, X. (2020). Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment international, 144, 106039.

Wahyuni, R. D. (2018). Identifikasi Bakteri Udara di Ruang Hemodialisa RSUD Undata Palu Tahun 2016. Jurnal Ilmiah Kedokteran, 5(1), 21–33.

Wang, C. C., Prather, K. A., Sznitman, J., Jimenez, J. L., Lakdawala, S. S., Tufekci, Z., & Marr, L. C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), eabd9149.

Yang, J. H., Wu, U. I., Tai, H. M., & Sheng, W. H. (2019). Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens. Journal of Microbiology, Immunology and Infection, 52(3), 487–493. https://doi.org/10.1016/j.jmii.2017.08.017

Zaffina Salvatore, Vincenzo, C., Lembo Marco, V. M. R., & Napolitano Antonio, C. V. T. M. G. B. M. (2012). Accidental Exposure to UV Radiation Produced by Germicidal Lamp: Case Report and Risk Assessment. Journal Photochemistry and Photobiology, 88(12), 1001–1004. https://doi.org/10.1111/j.1751-1097.2012.01151.x




DOI: http://dx.doi.org/10.22373/ekw.v8i1.12028

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Lilik Mugiharto, Aries Sudiarso, Luhut Simbolon, Suparlan Suparlan, Wely Pesedena

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter