Clustering and Risk Analysis of The Earthquake in Sulawesi Using Mini Batch K-Means, K-Medoids, and Maximum Likelihood Method

Amirin Kusmiran

Abstract


Abstract: The earthquake events have been widely analyzed using a statistical approach. Therefore, the sole purpose of this research is clustering and risk analysis of earthquake events based on the combination of machine learning and statistics. The machine learning, conducted by Mini Batch K-Means and K-Medoids, is validated by the Davies-Bouldin index method to earthquake events cluster. Furthermore, the statistics approach conducted by the maximum likelihood method is to estimate the b-value and a-value of earthquake events. The data used in the earthquake events analysis in Sulawesi have a magnitude  5 SR during the period 1980-2022. The results show that the Mini Batch K-Means method is more efficient and accurate than the K-Medoids, and can cluster the earthquakes, namely cluster 0 below 100 km (shallow earthquake), cluster 1 above 100 km to 350 km (medium earthquake), cluster 2 above 350 km (deep earthquake), while K-Medoids method has two clusters namely cluster 0 below 100 km (shallow earthquake), and cluster 1 above 100 km to 350 km. The regions with b-value and a-value less than 0.9 and 7.5, respectively, and in cluster 0, namely the western part of North Sulawesi, Gorontalo, Middle Sulawesi, and West Sulawesi  Province, are as vulnerable to earthquake disasters. Meanwhile, the region in cluster 1 and cluster 2 with b-value and a-value more than 0.9 and 7.5 respectively namely South Sulawesi, the Northern part of North Sulawesi, and Southeast Sulawesi Province, are categorized as minor earthquake disasters. Furthermore, the clustering and risk analysis based on these methods results are good performance, which has recognised cluster and vulnerability of the earthquake events.

Abstrak: Kejadian gempa bumi telah banyak dianalisis dengan menggunakan pendekatan statistik. Oleh karena itu, tujuan penelitian untuk menganalisis kejadian gempa dengan menggunakan kombinasi pendekatan machine learning dengan statistik. Pendekatan machine learning dilakukan dengan metode baru yakni metode Mini Batch K-Means dan K-Medoids yang divalidasi dengan metode Davies-Bouldin indeks yang digunakan untuk mengklaster kejadian gempa, sedangkan pendekatan secara statistik dilakukan dengan metode maximum likelihood untuk mengestimasi kerentanan gempa bumi berdasarkan nilai-b dan nilai-a. Data yang digunakan yakni data kejadian gempa di Sulawesi dengan magnitudo ≥ 5 SR dengan periode 1980-2022. Hasil menunjukan bahwa metode Mini Batch K-Means lebih effisien dan akurat dibandingkan dengan metode K-Medoids, dan mengklasifikasi tiga klaster kedalaman gempa, yakni klaster 0 dengan kedalaman kurang dari 100 km (gempa dangkal), klaster 1 dengan kedalaman diantara 100 km dengan 350 km (gempa menengah), klaster 2 dengan kedalaman lebih dari 350 km (gempa dalam). Sementara metode K-Medoids dua klaster kedalama gempa, yakni klaster 0 dengan kedalaman dibawah 100 km (gempa dangkal), dan klaster 1 dengan kedalaman lebih dari 100 km. Beberapa wilayah yang mempunyai nilai-b dan nilai-a secara berurutan kurang dari 0,9 dan 7,5 dan termasuk ke dalam klaster 0, yakni Provinsi Sulawesi Utara bagian barat, Gorontalo, Sulawesi Tengah, dan Sulawesi Barat dikategorikan rawan terhadap bencana gempa; Sedangkan wilayah yang termasuk ke dalam klaster 1 dan klaster 2 dengan nilai-b dan nilai-a secara berurutan lebih dari 0,9 dan 7,5 yakni Provinsi Sulawesi Selatan, Sulawesi Utara bagian Utara, dan Sulawesi Tenggara dikategorikan sebagai rendah terhadap bencana gempa. Dengan demikian, kedua metode dapat digunakan untuk meng-klaster gempa dan identifikasi kerentanan kejadian gempa bumi.


Keywords


Mini Batch K-Means; K-Medoids; a-value; b-value; Seismicity

Full Text:

PDF

References


Ahmad, A., & Irsalinda, N. (2020). Cluster Analysis of Earthquake’s Data Clustering in Indonesia using Fuzzy K-means Clustering. Proceeding International Conference on Science and Engineering, 3, 3–7. https://doi.org/10.14421/icse.v3.457

Cipta, A., Robiana, R., Griffin, J., Horspool, N., Hidayati, S., & Cummins, P. (2016). A probabilistic seismic hazard assessment for Sulawesi, Indonesia. Geological Society, London, Special Publications, 441. https://doi.org/10.1144/SP441.6

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909

Ernandi, F. N., & Madlazim. (2020). Analisis Variasi a-Value dan b-Value dengan Menggunakan Software ZMAP V.6 sebagai Indikator Potensi Gempa Bumi di Wilayah Nusa Tenggara Barat. Inovasi Fisika Indonesia, 9(3), 24–30. https://doi.org/10.26740/ifi.v9n3.p24-30

Eva, M. N. (2016). Pemetaan Daerah Rentan Gempa Bumi sebagai Dasar Perencanaan Tata Ruang dan Wilayah di Provinsi Sulawesi Barat. KURVATEK, 1(2), 41–47. https://doi.org/10.33579/krvtk.v1i2.417

Fowler, C. M. R. (2004). The Solid Earth: An Introduction to Global Geophysics (2nd edition). Cambridge University Press.

Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California*. Bulletin of the Seismological Society of America, 34(4), 185–188. https://doi.org/10.1785/BSSA0340040185

Hidayati, R., Zubair, A., Pratama, A. H., & Indana, L. (2021). Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering. Techno.Com, 20(2), 186–197. https://doi.org/10.33633/tc.v20i2.4556

Koulakov, I., Maksotova, G., Mukhopadhyay, S., Raoof, J., Kayal, J., Jakovlev, A. V., & Василевский, А. (2014). Variations of the crustal thickness in Nepal Himalayas based on tomographic inversion of regional earthquake data. Solid Earth Discussions, 6. https://doi.org/10.5194/sed-6-2867-2014

Kijko, A. (1988). Maximum likelihood estimation of Gutenberg-Richterb parameter for uncertain magnitude values. Pure and Applied Geophysics, 127(4), 573–579. https://doi.org/10.1007/BF00881745

Kurniawati, I., & Muhammad Rahman, R. (2020). Analisis Statistik Kegempaan Wilayah Sulawesi Selatan Periode 2006-2018. Jurnal MSA ( Matematika Dan Statistika Serta Aplikasinya ), 8(1), 77–81. https://doi.org/10.24252/msa.v8i1.12942

Kurniawati, I., & Rahman, M. (2020). Analisis Statistik Kegempaan Wilayah Sulawesi Selatan Periode 2006-2018. Jurnal MSA ( Matematika Dan Statistika Serta Aplikasinya ), 8, 77. https://doi.org/10.24252/msa.v8i1.12942

Novinanti, P., Setyorini, D., & Rafflesia, U. (2017). K-Means cluster analysis in earthquake epicenter clustering. International Journal of Advances in Intelligent Informatics, 3, 81. https://doi.org/10.26555/ijain.v3i2.100

Nurana, I., Simanjuntak, A. V. H., Umar, M., Kuncoro, D. C., Syamsidik, S., & Asnawi, Y. (2021). Spatial Temporal Condition of Recent Seismicity In The Northern Part of Sumatra. Elkawnie: Journal of Islamic Science and Technology, 7(1), 131–145. https://doi.org/10.22373/ekw.v7i1.8797

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.

Ray, S., Alam, Md. J. B., Haque, M., Das, S. K., Tanmoy, B. B., & Hasan, Md. N. (2019). A study on b-value and investigation of seismic hazard in Sylhet seismic region, Bangladesh using Gumbel’s extreme value distribution method. SN Applied Sciences, 1(5), 435. https://doi.org/10.1007/s42452-019-0442-3

Rifa, I. H., Pratiwi, H., & Respatiwulan, R. (2020). Clustering of Earthquake Risk in Indonesia using K-Medoid dan K-Mean Alghorithms. MEDIA STATISTIKA, 13(2), 194–205. https://doi.org/10.14710/medstat.13.2.194-205

Rigo, A., Souriau, A., & Sylvander, M. (2018). Spatial variations of b-value and crustal stress in the Pyrenees. Journal of Seismology, 22, 337–352. https://doi.org/10.1007/s10950-017-9709-6

Rousseeuw, P., Hubert, M., & Struyf, A. (1997). Clustering in an Object-Oriented Environment. Journal of Statistical Software, 01. https://doi.org/10.18637/jss.v001.i04

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

Scholz, C. (1968). The Frequency-Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes. 58. https://doi.org/10.1785/BSSA0580010399

Scholz, C. (2015). On the Stress Dependence of the Earthquake b-value. Geophysical Research Letters, 42. https://doi.org/10.1002/2014GL062863

Sculley, D. (2010). Web-scale k-means clustering. Proceedings of the 19th International Conference on World Wide Web - WWW ’10, 1177. https://doi.org/10.1145/1772690.1772862

Setiyono, U., Gunawan, I., Yatimantoro, T., Imananta, R. T., Ramadhan, M., Hidayanti, Angraini, S., Hawati, P., & Yogaswara, D. S. (2019). Katalog gempabumi signifikan dan merusak 1821—2018 (Jakarta; Vol. 1). Badan Meteorologi Klimatologi dan Geofisika.

Seydoux, L., Balestriero, R., Poli, P., Hoop, M. de, Campillo, M., & Baraniuk, R. (2020). Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nature Communications, 11(1), 3972. https://doi.org/10.1038/s41467-020-17841-x

Supartoyo, S., Sulaiman, C., & Junaedi, D. (2014). Kelas tektonik sesar Palu Koro, Sulawesi Tengah. Jurnal Lingkungan Dan Bencana Geologi, 5(2), 111–128. https://doi.org/10.34126/jlbg.v5i2.68

Utsu, T. (1965). A method for determining the value of b in a formula log n=a-bM showing the magnitude frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ, 13, 99–103.

White, L. T., Hall, R., Armstrong, R. A., Barber, A. J., BouDagher Fadel, M., Baxter, A., Wakita, K., Manning, C., & Soesilo, J. (2017). The geological history of the Latimojong region of western Sulawesi, Indonesia. Journal of Asian Earth Sciences, 138, 72–91. https://doi.org/10.1016/j.jseaes.2017.02.005

Yanuarto, T. (2021). Pembelajaran Gempa Sulbar, Fenonema dan Dampak Kerusakan Bangunan [BNPB]. https://bnpb.go.id/berita/pembelajaran-gempa-sulbar-fenonema-dan-dampak-kerusakan-bangunan

Yuan, R. (2021). An improved K-means clustering algorithm for global earthquake catalogs and earthquake magnitude prediction. Journal of Seismology, 25(3). https://doi.org/10.1007/s10950-021-09999-8

Zakaria, Z., & Sidarto, S. (2015). Aktifitas Tektonik di Sulawesi dan Sekitarnya Sejak Mesozoikum Hingga Kini Sebagai Akibat Interaksi Aktifitas Tektonik Lempeng Tektonik Utama di Sekitarnya. Jurnal Geologi dan Sumberdaya Mineral, 16(3), 115–127. https://doi.org/10.33332/jgsm.geologi.v16i3.36




DOI: http://dx.doi.org/10.22373/ekw.v8i2.13027

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Amirin Kusmiran

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter