The Application and Relevancy of Rainfall-Runoff-Inundation (RRI) Model in Indonesia
Abstract
Abstract: Indonesia has a very large number of watersheds and has a very diverse size. Damage to several watersheds in Indonesia has also occurred and often results in catastrophic floods and droughts that threaten people. The presence of the RRI Model with its capabilities will help contribute to watershed management in order to solve water resource problems. The RRI model is a two-dimensional (2D) model capable of simulating runoff, rainfall, and flood inundation simultaneously. The use of this model in Indonesia has reached 13 times which was compiled based on the number of publications on the application of the RRI model. All of these publications have passed peer-reviewed papers from both journals and conference papers. Applications have been made in several places including the Solo watershed, the Upper Citarum watershed, the Batanghari watershed, and the upstream Brantas watershed. Given the increasing number of problematic watersheds in Indonesia, the use of this model has the prospect and relevancy of being carried out in other watersheds. However, until now, researchers have had challenges in building hydrological models because of the constraints on the availability of climatological and hydrological data in the watershed. Therefore, in addition to improving the data measuring infrastructure in the field, remote sensing techniques are also needed in an effort to generate targeted watershed information. In fact, the effort to utilize remote sensing in generating unmeasurable data in the field has been successfully conducted in several studies.
Abstrak: Indonesia memliki jumlah DAS yang sangat banyak dan memiliki ukuran yang sangat beragam. Kerusakan beberapa DAS di Indonesia juga telah terjadi dan sering berakibat bencana banjir dan kekeringan yang mengancam penduduk setempat. Kehadiran Model RRI dengan kemampuannya akan membantu berkontribusi dalam memajemen DAS ataupun dalam usaha untuk menyelesaikan permasalahan sumberdaya air. Model RRI adalah suatu model dua dimensi (2D) yang memiliki kemampuan untuk mensimulasikan limpasan curah hujan dan genangan banjir secara simultan. Penggunaan model RRI ini di Indonesia telah mencapai 13 kali, yang tercatat berdasarkan jumlah publikasi yang terkait dengan aplikasi model RRI. Semua publikasi tersebut telah melewati peer-review baik dari jurnal maupun dari konferensi. Aplikasi telah dilakukan dibeberapa tempat termasuk DAS Solo, DAS Citarum, DAS Batanghari, dan DAS Brantas. Mengingat jumlah DAS yang bermasalah di Indonesia semakin meningkat, maka penggunaan model ini memiliki prospek untuk dilakukan di DAS lain. Namun sampai saat ini, para peneliti memiliki tantangan dalam membangun permodelan hidrologi karena terkendala pada ketersediaan data klimatologi dan hidrologi di dalam DAS. Oleh karena itu, selain peningkatan infrastruktur pengukur data dilapangan dan teknik pengindraan jauh juga diperlukan dalam usaha menyediakan informasi DAS yang ditargetkan. Usaha penggunaan teknik pengindraan jauh dalam menyediakan data yang tidak terukur dilapangan telah sukses dan terbukti dilakukan di beberapa studi.
Keywords
Full Text:
PDFReferences
Aduah, M. S., Jewitt, G. P. W., & Warburton Toucher, M. L. (2017). Assessing suitability of the ACRU hydrological model in a rainforest catchment in Ghana, West Africa. Water Science, 31(2), 198–214. https://doi.org/10.1016/j.wsj.2017.06.001
Azraie, M., Kadir, A., Remy, M., Mohd, R., Zainol, A., Luo, P., & Kaamin, M. (2022). Advance Flood Inundation Model Toward Flood Nowcasting : A Review. International Journal of Nanoelectronics and Materials, 15(March), 81–100.
Dai, J., Cui, Y., Cai, X., Brown, L. C., & Shang, Y. (2016). Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model. Agricultural Water Management, 174, 52–60. https://doi.org/10.1016/j.agwat.2016.02.029
Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A Review on Hydrological Models. Aquatic Procedia, 4(Icwrcoe), 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126
Ghonchepour, D., Sadoddin, A., Bahremand, A., Croke, B., Jakeman, A., & Salmanmahiny, A. (2021). A methodological framework for the hydrological model selection process in water resource management projects. Natural Resource Modeling, 34(3), 1–31. https://doi.org/10.1111/nrm.12326
Hapsari, R. I., Syarifuddin, M., Putri, R. I., & Novianto, D. (2021). Comparisons of distributed and lumped rainfall-runoff model for soil moisture estimation. IOP Conference Series: Earth and Environmental Science, 930(1). https://doi.org/10.1088/1755-1315/930/1/012071
Hapsari, R. I., Syarifuddin, M., Putri, R. I., Sasongko, R., & Aponno, G. (2021). Satellite soil moisture downscaling using rainfall-runoff model. Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021), Aogs 2021, 67–69.
Hendrawan, V. S. A. (2020). Crop Yield Response to The Flood Hazard : An Insight from Remote Sensing and Hydrodynamic. Agricultural Meteorology in Tohoku, 64(March 2020), 27–28.
Hendrawan, V. S. A., & Komori, D. (2021). Developing flood vulnerability curve for rice crop using remote sensing and hydrodynamic modeling. International Journal of Disaster Risk Reduction, 54(August 2020), 102058. https://doi.org/10.1016/j.ijdrr.2021.102058
Ikhwali, M. Faisi, & Pawattana, C. (2022). Assessment of hydrologic variations under climate change scenarios using fully-distributed hydrological model in Huai Luang Watershed, Thailand. Engineering and Applied Science Research, 49(4), 470–484. https://doi.org/10.14456/easr.2022.47
Ikhwali, M F, Nur, S., Darmansyah, D., Hamdan, A. M., Ersa, N. S., Aida, N., Yusra, A., & Satria, A. (2022). A review of climate change studies on paddy agriculture in Indonesia. ICATES 22, 1–12. https://doi.org/10.1088/1755-1315/1116/1/012052
Ikhwali, M Faisi, Ibrahim, M., Nur, S., Ferijal, T., & Prayogo, W. (2022). Application of Soil and Water Assessment Tool in Indonesia – a review and challenges. Desalination and Water Treatment, 277(November), 105–119. https://doi.org/10.5004/dwt.2022.29018
Ikhwali, M Faisi, Pawattana, C., Nur, S., Azhari, B., Ikhsan, M., & Aida, N. (2022). Reviews, challenges, and prospects of the application of Hydrologic Engineering Center- Hydrologic Modelling System ( HEC-HMS ) model in Indonesia. Engineering and Applied Science Research, 49(5), 669–680. https://doi.org/10.14456/easr.2022.65
Ikhwali, M Faisi, Rau, M. I., & Pawattana, C. (2023). Evaluation of Flood and Drought Events Using AR5 Climate Change Scenarios in Indonesia. Journal of the Civil Engineering Forum, 9(January), 37–46. https://doi.org/10.22146/jcef.4721
Ikhzan, J., Apip, Fakhrudin, M., Subehi, L., & Yamamoto, K. (2021). Flood Hazard Assessment with High Spatial Resolution under Climate Change Scenario. Journal of Physics: Conference Series, 1858(1), 1–10. https://doi.org/10.1088/1742-6596/1858/1/012058
Karunia, T. U., & Ikhwali, M. F. (2021). Effects of population and land-use change on water balance in DKI Jakarta. IOP Conference Series: Earth and Environmental Science, 622(1). https://doi.org/10.1088/1755-1315/622/1/012045
Kudo, S., Sayama, T., Hasegawa, A., & Iwami, Y. (2016). Analysis of flood risk change in future climate in terms of discharge and inundation in the Solo River Basin. 7th ICWRER, December, 1–6.
Kudo, Shun, Sayama, T., Hasegawa, A., & Iwami, Y. (2015). Assessment of Climate Change Impact on Flood Discharge And Inundation In The Solo River Basin, Indonesia. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 71(4), I_1321-I_1326.
Livneh, B., Rajagopalan, B., & Kasprzyk, J. (2017). Hydrological model application under data scarcity for multiple watersheds, Java Island, Indonesia. Biochemical Pharmacology, 9, 127–139. https://doi.org/10.1016/j.ejrh.2016.09.007
Manfreda, S., Mita, L., Dal Sasso, S. F., Samela, C., & Mancusi, L. (2018). Exploiting the use of physical information for the calibration of a lumped hydrological model. Hydrological Processes, 32(10), 1420–1433. https://doi.org/10.1002/hyp.11501
Marshall, L., Nott, D., & Sharma, A. (2005). Hydrological model selection: A Bayesian alternative. Water Resources Research, 41(10), 1–11. https://doi.org/10.1029/2004WR003719
Milzow, C., Krogh, P. E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences, 15(6), 1729–1743. https://doi.org/10.5194/hess-15-1729-2011
Nastiti, K. D., An, H., Kim, Y., & Jung, K. (2018). Large-scale rainfall–runoff–inundation modeling for upper Citarum River watershed, Indonesia. Environmental Earth Sciences, 77(18), 0. https://doi.org/10.1007/s12665-018-7803-x
Nastiti, K. D., Kim, Y., Jung, K., & An, H. (2015). The application of the Rainfall-Runoff-Inundation (RRI) model for inundation case in upper Citarum Watershed, West Java-Indonesia. Procedia Engineering, 125, 166–172. https://doi.org/10.1016/j.proeng.2015.11.024
Pakoksung, K., & Takagi, M. (2016). Effect of satellite-based rainfall products on river basin responses of runoff simulation on flood event. Modeling Earth Systems and Environment, 2(3), 1–14. https://doi.org/10.1007/s40808-016-0200-0
Pawattana, C., Panasoontorn, S., & Poopiwkham, S. (2021). Assessment of Water Shortage Situations in Lower Nam Pong Basin under Climate Change. Naresuan University Journal: Science and Technology, 4(29), 52–61.
Safriani, M., Amir, A., & Ikhwali, M. F. (2023). Evaluation of Krueng Tripa River Capacity in Ujung Krueng Village, Nagan Raya Regency, Indonesia. IOP Conference Series: Earth and Environmental Science, 1203(1), 012033. https://doi.org/10.1088/1755-1315/1203/1/012033
Sayama, T., Tatebe, Y., & Tanaka, S. (2017). An emergency response-type rainfall-runoff-inundation simulation for 2011 Thailand floods. Journal of Flood Risk Management, 10(1), 65–78. https://doi.org/10.1111/jfr3.12147
Sayama, Takahiro, River, C. P., River, C. P., & Sayama, T. (2014). Rainfall-Runoff-Inundation ( RRI ) model (Vol. 2013, pp. 2–3).
Sayama, Takahiro, Yamamoto, K., Araki, R., Siska, E. M., Takara, K., Sayama, T., Yamamoto, K., Araki, R., Siska, E. M., & Takara, K. (2019). Impact of Climate Change on Hydrological Cycle in a Humid Tropical River Basin in Sumatra, Indonesia. Proceedings of the 8th International Conference on Water Resources and Environment Research, ICWRER 2019, 1–4.
Shrestha, B B, Sawano, H., & Kuribayashi, D. (2016). Assessment of Disaster Damage due to Flood Hazard in the Solo River Basin of Indonesia. 7th ICWRER, 3(December 2007), 1–6.
Shrestha, Badri Bhakta, Perera, E. D. P., Kudo, S., Miyamoto, M., Yamazaki, Y., Kuribayashi, D., Sawano, H., Sayama, T., Magome, J., Hasegawa, A., Ushiyama, T., Iwami, Y., & Tokunaga, Y. (2019). Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia. Natural Hazards, 97(1), 157–192. https://doi.org/10.1007/s11069-019-03632-1
Sittersona, J., Knightesb, C., Parmarb, R., Wolfeb, K., Muchec, M., & Avant, B. (2018). An Overview of Rainfall-Runoff Model Types. 9th International Congress on Environmental Modelling and Software, September, 1–9.
Tam, T. H., Abd Rahman, M. Z., Harun, S., Hanapi, M. N., & Kaoje, I. U. (2019). Application of satellite rainfall products for flood inundation modelling in Kelantan River Basin, Malaysia. Hydrology, 6(4), 1–19. https://doi.org/10.3390/HYDROLOGY6040095
Utami, N., Sapei, A., & Apip. (2018). Analisis Perubahan Penggunaan Lahan Das Batanghari Jambi. Prosiding Seminar Nasional PERTETA 2018, 2016, 224–230.
Yamamoto, K., Sayama, T., & Apip. (2021). Impact of climate change on flood inundation in a tropical river basin in Indonesia. Progress in Earth and Planetary Science, 8(1), 1–15. https://doi.org/10.1186/s40645-020-00386-4
Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., & Cao, Y. (2014). What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environmental Modelling and Software, 58, 48–57. https://doi.org/10.1016/j.envsoft.2014.04.005
Yoshimot, S., & Amarnath, G. (2017). Applications of satellite-based rainfall estimates in flood inundation modeling - A case study in Mundeni Aru River Basin, Sri Lanka. Remote Sensing, 9(10), 1–16. https://doi.org/10.3390/rs9100998
Yoshimoto, S., & Amarnath, G. (2018). Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru River basin, Sri Lanka. Natural Hazards, 91(2), 491–513. https://doi.org/10.1007/s11069-017-3143-5
DOI: http://dx.doi.org/10.22373/ekw.v9i1.14577
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 M. Faisi Ikhwali, Budi Azhari, Alfin Khari, Suardi Nur, Abd Mujahid Hamdan, Kingkao Prommacot
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
P-ISSN : 2460-8912
E-ISSN : 2460-8920
ELKAWNIE
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.
View full page view stats report click here