Adsorption of Cadmium Metal Ions by a Physically-Chemically Activated Adsorbent From Candlenut (Aleurites Moluccana) Shells

Endy Setiawan, Muhammad Faisal, Mariana Mariana

Abstract


Abstract: Cadmium (Cd) is a pollutant that is highly toxic, dangerous to blood vessels, and bioaccumulative in water. The purpose of this paper is to investigate the kinetics and isotherms of cadmium ion adsorption using candlenut shell activated carbon. Adsorbents were prepared by chemically activating with 0.5M HCl, physically activating via pyrolysis at 700°C, and a combination of both methods. Adsorptions were conducted using Cd solutions with initial concentrations of 100-300 mg/L, at 100 rpm stirring, and contact times of 5-50 minutes. The chemical functional properties and surface morphology of the adsorbents were studied using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The characterization revealed that the adsorbent prepared by the physical-chemical activation method was the best and was used to test its performance in adsorbing Cd(II) solutions. The results showed that adsorption capacity increased with contact time and reached equilibrium at 50 minutes with a qm value of 12.6 mg/g. The adsorption process followed the Langmuir isotherm model with a constant of 0.14 and R2 value of 0.986, while the kinetic model was pseudo-second order with R2=0.999. The results demonstrated that candlenut shells are effective as adsorbent media for treating Cd(II) waste.

Abstrak: Kadmium Cd(II) merupakan salah satu bahan pencemar yang sangat beracun, berbahaya bagi tubuh dan mengalami biokumulasi dalam perairan. Artikel ini bertujuan untuk mengkaji kinetik dan isoterm penyerapan logam kadmium menggunakan arang aktif dari cangkang kulit kemiri. Adsorben cangkang kemiri dipreparasi dengan tiga variasi perlakuan aktivasi yaitu aktivasi kimia dengan larutan HCl 0,5M, aktivasi fisika melalui pirolisis pada suhu 700°C, dan kombinasi kimia dan fisika. Adsorpsi dilakukan dengan menggunakan larutan Cd dengan konsentrasi awal 100-300 mg/L, pengadukan 100 rpm dan waktu kontak 5-50 menit. Adsorben dikarakterisasi menggunakan  Fourier-transform infrared spectroscopy (FTIR) untuk mempelajari kandungan fungsional kimianya, dan menggunakan Scanning Electron Microscopy (SEM) untuk mengobservasi morfologi permukaan. Hasil karakterisasi menunjukkan bahwa adsorben dengan aktivasi kimia fisika menunjukkan karakteristik terbaik dan dipakai sebagai representatif dalam pengujian performa adsorpsi larutan Cd(II). Performa kerja adsorben ditinjau dari segi kapasitas adsorpsi terhadap waktu kontak dan konsentrasi awal larutan Cd(II). Selain itu, studi isotherm dan kinetika adsorpsi juga dilakukan untuk mempelajari mekanisme adsorpsi yang terjadi. Hasil eksperimen menunjukkan bahwa kapasitas adsorpsi meningkat seiring bertambahnya waktu kontak, dan kesetimbangan dicapai pada 50 menit dengan nilai qm sebesar 12,6 mg/g. Proses adsorpsi Cd(II) menggunakan adsorben cangkang kemiri teraktivasi kimia fisika mengikuti model isotherm Langmuir  model dengan nilai konstanta 0,14 dan dan R2 = 0,986.  Model kinetika adsorpsi ini adalah orde dua semu dengan R2=0,999. Hasil yang diperoleh membuktikan bahwa cangkang kemiri sangat efektif untuk dijadikan media adsorben untuk pengolahan limbah Cd(II).


Keywords


Adsorption; Cadmium: Candlenut shells; Activated carbon

Full Text:

PDF

References


Ahmed, J., Thakur, A., Goyal, A. (2022). Industrial wastewater and its toxic effects, Biological Treatment of Industrial Wastewater. The Royal Society of Chemistry, 1-14.

Andres, A.-B., Alfredo Campos, T., Mario, O.-M. (2022). Adsorption isotherms: enlightenment of the phenomenon of adsorption, in: Muharrem, I., Olcay Kaplan, I. (Eds.), Wastewater Treatment. IntechOpen, Rijeka, p. Ch. 2.

Asuquo, E., Martin, A., Nzerem, P., Siperstein, F., Fan, X. (2017). Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of Environmental Chemical Engineering 5(1), 679-698. https://doi.org/10.1016/j.jece.2016.12.043

Bashir, S., Hussain, Q., Zhu, J., Fu, Q., Houben, D., Hu, H., 2020. Efficiency of KOH-modified rice straw-derived biochar for reducing cadmium mobility, bioaccessibility and bioavailability risk index in red soil. Pedosphere 30(6), 874-882. https://doi.org/10.1016/S1002-0160(20)60043-1

Bhatnagar, A., Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, 157(2), 277-296. https://doi.org/10.1016/j.cej.2010.01.007

Brown, P., Atly Jefcoat, I., Parrish, D., Gill, S., Graham, E. (2000). Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 4(1), 19-29. https://doi.org/10.1016/S1093-0191(00)00004-6

Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Yang, S., Sun, Y., Zhang, K., Xu, J., Zheng, W., Hu, Z., Yang, Y., Gao, Y., Chen, Y., Zhang, X., Gao, F., Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 211, 235-253. https://doi.org/10.1016/j.chemosphere.2018.06.179

Farooq, U., Khan, M.A., Athar, M., Kozinski, J.A. (2011). Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chemical Engineering Journal, 171(2), 400-410. https://doi.org/10.1016/j.cej.2011.03.094

Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Bioresource Technology, 101(14), 5043-5053. https://doi.org/10.1016/j.biortech.2010.02.030

Feng, N., Guo, X., Liang, S., Zhu, Y., Liu, J., (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, 185(1), 49-54.

Han, G., Wang, J., Sun, H., Liu, B., Huang, Y. (2022). A critical review on the removal and recovery of hazardous Cd from Cd-containing secondary resources in Cu-Pb-Zn smelting. Processes, 12(11), 1846. https://doi.org/10.1016/j.jhazmat.2010.08.114

Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043

Huang, X., Gao, N.Y., Zhang, Q.I. (2007). Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon. Journal of Environmental Sciences, 19(11), 1287-1292.

Jalali, M., Aboulghazi, F. (2013). Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions. Journal of Material Cycles and Waste Management, 15(4), 548-555. https://doi.org/10.1016/S1001-0742(07)60210-1

Khan, Z., Elahi, A., Bukhari, D.A., Rehman, A. (2022). Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 26(6), 101569. https://doi.org/10.1016/j.jscs.2022.101569

Kisling, G.M., Kopp, S.J., Paulson, D.J., Hawley, P.L., Tow, J.P.(1987). Inhibition of rat heart mitochondrial respiration by cadmium chloride. Toxicology and Applied Pharmacology, 89(3), 295-304. https://doi.org/10.1016/0041-008X(87)90149-9

Kumar, R., Chawla, J., Kaur, I. (2015). Removal of cadmium ion from wastewater by carbon-based nanosorbents: a review. Journal of water and health, 13(1), 18-33. https://doi.org/10.2166/wh.2014.024

Kurniawati, D., Bahrizal, Sari, T.K., Adella, F., Sy, S. (2021). Effect of contact time adsorption of rhodamine B, methyl orange and methylene blue colours on langsat shell with batch methods. Journal of Physics: Conference Series, 1788(1), 012008. DOI 10.1088/1742-6596/1788/1/012008

Kwikima, M.M., Mateso., S., Chebude, Y.(2021). Potentials of agricultural wastes as the ultimate alternative adsorbent for cadmium removal from wastewater. A review. Scientific African, 13, e00934. https://doi.org/10.1016/j.sciaf.2021.e00934

Li, Y., Li, Q., Wu, C., Luo, X., Chen., (2020). The inappropriate application of the regression Langmuir Qm for adsorption capacity comparison. Science of The Total Environment, 699, 134222. https://doi.org/10.1016/j.scitotenv.2019.134222

Lo, S.-F., Wang, S.-Y., Tsai, M.-J., Lin, L.-D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design, 90(9), 1397-1406. https://doi.org/10.1016/j.cherd.2011.11.020

Mariana, M., Mistar, E.M., Syabriyana, M., Zulkipli, A.S., Aswita, D., Alfatah, T., (2022). Properties and adsorptive performance of candlenut shell and its porous charcoals for aqueous mercury(II) removal. Bioresource Technology Reports, 19, 101182. https://doi.org/10.1016/j.biteb.2022.101182

Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199-216. https://doi.org/10.1007/s10311-010-0297-8

Nguyen, H.T., Dang, P.T. (2020). Using activated diatomite as adsorbent for treatment of arsenic contaminated water. Key Engineering Materials, 850, 16-21. https://doi.org/10.4028/www.scientific.net/KEM.850.16

Nriagu, J.O., Pacyna, J.M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134-139. https://doi.org/10.1038/333134a0

Pyrzynska, K.(2019). Removal of cadmium from wastewaters with low-cost adsorbents. Journal of Environmental Chemical Engineering, 7(1), 102795. https://doi.org/10.1016/j.jece.2018.11.040

Qasem, N.A.A., Mohammed, R.H., Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0

Sihombing, T.P.H., Wijayanto, N. (2013). Candlenut tree management on people forest in tanah pinem subdistrict, dairi regency, Indonesia. Jurnal Manajemen Hutan Tropika, 19(1), 46-53.

Singh, R. (2020). Recycling of agricultural waste for wastewater treatment, in: Hashmi, S., Choudhury, I.A. (Eds.), Encyclopedia of Renewable and Sustainable Materials. Elsevier, Oxford, pp. 514-519.

Sugiani, W.N., Tiwow, V.M.A., Jura, M.R. (2021). The utilization of aleorites moluccana active charcoal as absorbent of lead metal in used oil. Jurnal Akademika Kimia, 10(2), 59-63. doi: 10.22487/j24775185.2021.v10.i2.pp59-63

Wahyuni, N., Zaharah, T.A., Ria, R. (2021). Characterization of hydrochloric acid activated natural kaolin and its application as adsorbent for Mg2+. Journal of Physics: Conference Series 1882(1), 012099. DOI 10.1088/1742-6596/1882/1/012099

Zakir, M., Fauziah, S., Sumpala, A.G.T. (2019a). Adsorption of chromium ions by candlenut shell based carbon activated with H3PO4. Journal of Physics: Conference Series, 1341(3), 032041. DOI 10.1088/1742-6596/1341/3/032041

Zakir, M., Taba, P., Edar, M. (2019b). Adsorption of Pb (II) ions by activated and modified candlenut shell based carbon. Journal of Physics: Conference Series, 1341(3), 032049. DOI 10.1088/1742-6596/1341/3/032049




DOI: http://dx.doi.org/10.22373/ekw.v9i2.16956

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Endy Setiawan, Muhammad Faisal, Mariana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter