Generation and Characterization of Bio-Oil Obtained From The Slow Pyrolysis of Oil Palm Empty Fruit Bunches at Various Temperatures

Siti Jamilatun, Dhias Cahya Hakika, Dwita Sarah, Anggun Puspitasari

Abstract


Abstract: In the last decade, biomass pyrolysis has received more attention in the renewable energy sector. This technology converts biomass to obtain valuable products: bio-oil, biochar, and gas. Bio-oil is a liquid product from pyrolysis that can be used to fuel boilers and furnaces, or further processed to produce fuel oil and chemical products. In this study, bio-oil was generated from slow pyrolysis of oil palm empty fruit bunches (OPEFB) at various temperatures. The objective of this research is to investigate the effect of temperature on the properties of products generated from the pyrolysis of OPEFB. Six different pyrolysis temperatures ranging from 300 to 700℃ were used to produce bio-oil. It was found that operating temperature affected the product yield and its properties significantly. The higher the operating temperature of slow pyrolysis, the amount of bio-oil produced was also increased with a decrease in biochar yield. The highest yield of bio-oil was found to be 55.53% at a pyrolysis temperature of 700℃ with a yield of biochar and syngas was 24.22% and 20.25%, respectively. The GC-MS analysis was used as a quantitative means to characterize the liquid pyrolysis product. The findings of GC-MS showed that bio-oil generated in this study was dominated by phenols and ketones. In conclusion, pyrolysis of OPEFB demonstrates significant potential for industrial applications to generate valuable products especially bio-oil, providing a renewable alternative to fossil fuels.

Abstrak: Dalam satu dekade terakhir, pirolisis biomassa semakin mendapat perhatian di sektor energi terbarukan. Teknologi ini mengubah biomassa menjadi produk-produk yang bernilai seperti: bio-oil, biochar, dan gas. Bio-oil adalah produk cair dari pirolisis yang dapat digunakan sebagai bahan bakar boiler dan furnace, atau diproses lebih lanjut untuk menghasilkan bahan bakar minyak dan produk kimia. Dalam penelitian ini, bio-oil dihasilkan dari proses pirolisis lambat tandan kosong kelapa sawit (TKKS) pada berbagai kondisi suhu. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh suhu terhadap karakteristik produk yang dihasilkan dari pirolisis TKKS. Berbagai variasi suhu pirolisis dari rentang 300 hingga 700℃ digunakan untuk menghasilkan bio-oil. Hasil penelitian menunjukkan bahwa suhu pirolisis mempengaruhi yield produk dan karakteristiknya secara signifikan. Semakin tinggi suhu operasi pirolisis, jumlah bio-oil yang dihasilkan juga semakin meningkat, namun diikuti dengan penurunan yield biochar. Yield tertinggi bio-oil yaitu sebesar 55,53% diperoleh pada suhu 700℃ diikuti dengan yield biochar dan syngas masing-masing sebesar 24,22% and 20,25%. Analisis GC-MS digunakan sebagai metode kuantitatif untuk mengkarakterisasi produk cair dari pirolisis. Hasil GC-MS menunjukkan bahwa komposisi bio-oil yang dihasilkan dalam penelitian ini didominasi oleh senyawa fenol dan keton. Penelitian ini menjanjikan potensi dari pirolisis TKKS untuk aplikasi industri guna menghasilkan produk bernilai tinggi berupa bio-oil sebagai penyedia sumber energi terbarukan pengganti bahan bakar fosil.


Keywords


biomass; bio-oil; GC-MS; oil palm empty fruit bunch; pyrolysis

Full Text:

PDF

References


Aboulkas, A., Hammani, H., El Achaby, M., Bilal, E., Barakat, A., & El Harfi, K. (2017). Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Bioresource Technology, 243, 400–408. https://doi.org/10.1016/j.biortech.2017.06.098

Adinda, R. F., Faisal, M., & Muhammad Djuned, F. (2023). Characteristics of Liquid Smoke From Young Coconut Shells at Various Pyrolysis Temperatures. Elkawnie, 9(1), 24. https://doi.org/10.22373/ekw.v9i1.14225

Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., & Barranco, R. (2011). Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Processing Technology, 92(9), 1805–1811. https://doi.org/10.1016/j.fuproc.2011.04.037

Aprianti, N., Faizal, M., Said, M., & Nasir, S. (2020). Valorization of Palm Empty Fruit Bunch Waste for Syngas Production Through Gasification. Journal of Ecological Engineering, 21(7), 17–26. https://doi.org/10.12911/22998993/125461

Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014

Bridgwater, A. V. (2003). Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chemical Engineering Journal, 91(2–3), 87–102. https://doi.org/10.1016/S1385-8947(02)00142-0

Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181. https://doi.org/10.1016/j.biombioe.2014.01.002

Dickerson, T., & Soria, J. (2013). Catalytic Fast Pyrolysis: A Review. Energies, 6(1), 514–538. https://doi.org/10.3390/en6010514

Gai, C., Dong, Y., & Zhang, T. (2013). The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresource Technology, 127, 298–305. https://doi.org/10.1016/j.biortech.2012.09.089

Hanan, F., Jawaid, M., & Paridah, M. T. (2018). Oil Palm EFB/Kenaf Fibre Reinforced Epoxy Hybrid Composites: Dimension Stability Behaviours. IOP Conference Series: Materials Science and Engineering, 368, 012024. https://doi.org/10.1088/1757-899X/368/1/012024

Handoko, S., Rianda, S., & Nurhadi, N. (2021). Effect of low rank coal temperature and moisture content on slow pyrolysis process. Indonesian Mining Journal, 24(2), 105–111. https://doi.org/10.30556/imj.Vol24.No2.2021.1234

Hasan, M. M., Rasul, M., Ashwath, N., Jahirul, M. I., & Khan, M. M. (2020). Effect of Temperature on the Characteristics of Bio-oil Produced from Slow Pyrolysis of Beauty Leaf Fruit Shell.

Ighalo, J. O., & Adeniyi, A. G. (2020). Factor effects and interactions in steam reforming of biomass bio-oil. Chemical Papers, 74(5), 1459–1470. https://doi.org/10.1007/s11696-019-00996-3

Jamilatun, S., Hakika, D. C., Nuraini, N., Pitoyo, J., Setyawan, M., Budiman, A., & Rahayu, A. (2022). Reaction kinetics of Components of Ex-Situ Slow Pyrolysis of Spirulina platensis Residue with Silica-alumina Catalyst Through 5-Lump Model. International Journal of Renewable Energy Research, Vol12i3. https://doi.org/10.20508/ijrer.v12i3.13159.g8533

Jamilatun, S., Elisthatiana, Y., Aini, S. N., Mufandi, I., & Budiman, A. (2020). Effect of Temperature on Yield Product and Characteristics of Bio-oil From Pyrolysis of Spirulina platensis Residue. Elkawnie, 6(1), 96. https://doi.org/10.22373/ekw.v6i1.6323

Jamilatun, S., Budiman, A., Anggorowati, H., Yuliestyan, A., Surya Pradana, Y., & Budhijanto. (2019). Ex-Situ Catalytic Upgrading of Spirulina platensis residue Oil Using Silica Alumina Catalyst. International Journal of Renewable Energy Research, 9(4). https://doi.org/10.20508/ijrer.v9i4.10119.g7776

Kerdsuwan, S., & Laohalidano, K. (2011). Renewable Energy from Palm Oil Empty Fruit Bunch. In M. Nayeripour (Ed.), Renewable Energy—Trends and Applications. InTech. https://doi.org/10.5772/25888

Kumagai, S., Matsuno, R., Grause, G., Kameda, T., & Yoshioka, T. (2015). Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H 2 SO 4. Bioresource Technology, 178, 76–82. https://doi.org/10.1016/j.biortech.2014.09.146

Larasati, R. F. (2023, February 6). Nationwide Synergy and Investment for Indonesia’s Renewable Energy. https://iesr.or.id/en/nationwide-synergy-and-investment-for-indonesias-renewable-energy

Maulinda, L., Husin, H., Arahman, N., Rosnelly, C. M., Syukri, M., Nurhazanah, Nasution, F., & Ahmadi. (2023). The Influence of Pyrolysis Time and Temperature on the Composition and Properties of Bio-Oil Prepared from Tanjong Leaves (Mimusops elengi). Sustainability, 15(18), 13851. https://doi.org/10.3390/su151813851

Omar, R., Idris, A., Yunus, R., Khalid, K., & Aida Isma, M. I. (2011). Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel, 90(4), 1536–1544. https://doi.org/10.1016/j.fuel.2011.01.023

Park, H. J., Dong, J.-I., Jeon, J.-K., Park, Y.-K., Yoo, K.-S., Kim, S.-S., Kim, J., & Kim, S. (2008). Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chemical Engineering Journal, 143(1–3), 124–132. https://doi.org/10.1016/j.cej.2007.12.031

Puasa, N. A., Ahmad, S. A., Zakaria, N. N., Khalil, K. A., Taufik, S. H., Zulkharnain, A., Azmi, A. A., Gomez-Fuentes, C., Wong, C.-Y., & Shaharuddin, N. A. (2022). Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up. Plants, 11(1), 127. https://doi.org/10.3390/plants11010127

Qu, T., Guo, W., Shen, L., Xiao, J., & Zhao, K. (2011). Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Industrial & Engineering Chemistry Research, 50(18), 10424–10433. https://doi.org/10.1021/ie1025453

Sarkar, J. K., & Wang, Q. (2020). Characterization of Pyrolysis Products and Kinetic Analysis of Waste Jute Stick Biomass. Processes, 8(7), 837. https://doi.org/10.3390/pr8070837

Shariff, A. (2014). Slow Pyrolysis of Oil Palm Empty Fruit Bunches for Biochar Production and Characterisation. Journal of Physical Science, 25(2), 97–112.

Statista. (2023, May 2). Production volume of palm oil in Indonesia from 2012 to 2021. Statista Research Department. https://www.statista.com/statistics/706786/production-of-palm-oil-in-indonesia/

Supriatna, J., Setiawati, M. R., Sudirja, R., Suherman, C., & Bonneau, X. (2022). Composting for a More Sustainable Palm Oil Waste Management: A Systematic Literature Review. The Scientific World Journal, 2022, 1–20. https://doi.org/10.1155/2022/5073059

Snyder, B. F. (2019). Costs of biomass pyrolysis as a negative emission technology: A case study. International Journal of Energy Research, 43(3), 1232–1244. https://doi.org/10.1002/er.4361

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122

Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/10.1016/j.pecs.2017.05.004

Yang, B., & Chen, M. (2021). Simulation of two-stage automotive shredder residue pyrolysis and gasification process using the Aspen Plus model. BioResources, 16(3), 5964–5984. https://doi.org/10.15376/biores.16.3.5964-5984

Zhang, J., Jiang, X., Ye, X., Chen, L., Lu, Q., Wang, X., & Dong, C. (2016). Pyrolysis mechanism of a β-O-4 type lignin dimer model compound: A joint theoretical and experimental study. Journal of Thermal Analysis and Calorimetry, 123(1), 501–510. https://doi.org/10.1007/s10973-015-4944-y




DOI: http://dx.doi.org/10.22373/ekw.v10i1.17844

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Siti Jamilatun, Dhias Cahya Hakika, Dwita Sarah, Anggun Puspitasari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter