Comparison Study of Macropollutant Removal in River Water Using Conventional Treatment and Nanofiber Membrane-Based System

Auliya Anwar, Cut Meurah Rosnelly, Ichwana Ramli, Nasrul Arahman, Afrillia Fahrina

Abstract


Abstract

High levels of nitrate (NO3) and phosphate (PO4) concentrations in water sources due to agricultural drainage or municipal disposal can generate eutrophication. It is characterized by blooms of either green or blue-green algae leading to significant drops in dissolved oxygen and frequently renders many fish and zooplankton species unable to survive in the water. In this study, the efforts to reduce total suspended solids (TSS), NO3, and PO4 pollutants in river water are evaluated using conventional treatment and membrane filtration systems as a comparison. Conventional water treatment process uses bar screening, flocculation-coagulation, and settling/sedimentation to remove pollutants; while membrane filtration system rejects a wide range of pollutants using pore exclusion. This study assessed electrospinning membrane filtration made of polyacrylonitrile (PAN) and polyacrylonitrile/polyethylene glycol-silver nanoparticle (PAN/PEG-Ag). The effectiveness of removing pollutant levels after going through a conventional type of water treatment and 12% PAN membrane (EM1), and 12% PAN-PEGAg 1% (EM2) showed the reduction level of TSS was 82.76%, 75.86%, 65.52 %, NO3 reduction was 73.97%, 85.62%, 83.19%, and PO4 reduction was 77.20%, 59.60%, 53.45%. The removal efficiency using pristine PAN membrane was 81.86%, 73.02% when using the conventional process, and 64.31% when using 12% PAN-1% PEGAg. After the conventional and membrane processes, TSS and nitrate level reductions were adequate, as seen from the set quality standard values, i.e., below 50 mg/L and 10 mg/L. Meanwhile, after both water treatments, the phosphate level did not meet the water quality standard, 0.2 mg/L, as regulated in the Government Regulation Number 22 of 2021.

Abstrak: Konsentrasi nitrat (NO3) dan fosfat (PO4) yang tinggi dalam sumber air karena drainase pertanian atau pembuangan kota dapat menghasilkan eutrofikasi. Hal ini ditandai dengan mekarnya ganggang hijau atau biru-hijau yang menyebabkan penurunan oksigen terlarut yang signifikan dan sering membuat banyak ikan dan spesies zooplankton tidak dapat bertahan hidup di air. Dalam studi ini, upaya untuk mengurangi polutan total padatan tersuspensi (TSS), NO3, dan PO4 dalam air sungai dievaluasi menggunakan pengolahan konvensional dan sistem filtrasi membran sebagai pembanding. Proses pengolahan air konvensional menggunakan bar screening, flokulasi-koagulasi, dan pengendapan/sedimentasi untuk menghilangkan polutan; sementara sistem filtrasi membran merejeksi berbagai macam polutan menggunakan eksklusi pori. Studi ini menilai filtrasi membran elektrospinning yang terbuat dari polyacrilonitrile (PAN) dan polyacrilonitrile/polyethylene glycol-silver nanoparticle (PAN/PEG-Ag). Efektifitas penyisihan kadar pencemar setelah melalui jenis pengolahan air secara konvensional dan membran PAN 12% (EM1), dan PAN 12%-PEGAg 1% (EM2) menunjukkan tingkat reduksi dari TSS adalah 82,76%, 75,86%, 65,52%, reduksi NO3 adalah 73,97%, 85,62%, 83,19%, dan reduksi PO4 adalah 77,20%, 59,60%, 53,45%. Efisiensi penyisihan menggunakan membran PAN murni adalah 81,86%, 73,02% bila menggunakan proses konvensional, dan 64,31% bila menggunakan 12% PAN-1% PEGAg. Setelah proses konvensional dan membran, penurunan kadar TSS dan nitrat cukup baik, terlihat dari nilai baku mutu yang ditetapkan yaitu di bawah 50 mg/L dan 10 mg/L. Sedangkan setelah dilakukan kedua pengolahan air tersebut, kadar fosfat tidak memenuhi baku mutu air yaitu 0,2 mg/L sebagaimana diatur dalam Peraturan Pemerintah Nomor 22 Tahun 2021.


Keywords


Contaminant levels; Conventional process; membrane separation, water treatment

Full Text:

PDF

References


Al Bazedi, G. A., & Abdel-Fatah, M. A. (2020). Correlation between Operating Parameters and Removal Efficiency for Chemically Enhanced Primary Treatment System of Wastewater. Bulletin of the National Research Centre, 44(1), 107. https://doi.org/10.1186/s42269-020-00368-y

Badan Standardisasi Nasional. (2004). Air dan air limbah – Bagian 3: Cara Uji Padatan Tersuspensi Total (Total Suspended Solid, TSS) secara Gravimetri. SNI 06-6989.3-2004, 10.

Badan Standardisasi Nasional. (2012). SNI 7828:2012 tentang Pengambilan Contoh Air Minum dari Instalasi Pengolahan Air dan Sistem Jaringan Distribusi Perpipaan. 31.

Balcerzak, W. (2006). The Protection of Reservoir Water Against the eutrophication Process. Polish Journal of Environmental Studies, 15(6), 837–844.

Barhoum, A., Deshmukh, K., García-Betancourt, M.-L., Alibakhshi, S., Mousavi, S. M., Meftahi, A., Sabery, M. S. K., & Samyn, P. (2023). Nanocelluloses as Sustainable Membrane Materials for Separation and Filtration Technologies: Principles, opportunities, and challenges. Carbohydrate Polymers, 317, 121057. https://doi.org/https://doi.org/10.1016/j.carbpol.2023.121057

Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A. (2020). Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation, 1–26. https://doi.org/10.1007/978-3-030-35691-0_1

Bilad, M. R., Westbroek, P., & Vankelecom, I. F. J. (2011). Assessment and Optimization of Electrospun nanofiber-membranes in a Membrane Bioreactor (MBR). Journal of Membrane Science, 380(1–2), 181–191. https://doi.org/10.1016/j.memsci.2011.07.003

Bondonno, C. P., Zhong, L., Bondonno, N. P., Sim, M., Blekkenhorst, L. C., Liu, A., Rajendra, A., Pokharel, P., Erichsen, D. W., Neubauer, O., Croft, K. D., & Hodgson, J. M. (2023). Nitrate: The Dr. Jekyll and Mr. Hyde of Human Health? Trends in Food Science and Technology, 135(March), 57–73. https://doi.org/10.1016/j.tifs.2023.03.014

Braun, J. C. A., Borba, C. E., Godinho, M., Perondi, D., Schontag, J. M., & Wenzel, B. M. (2019). Phosphorus Adsorption in Fe-loaded Activated Carbon: Two-Site Monolayer Equilibrium Model and Phenomenological Kinetic Description. Chemical Engineering Journal, 361(September 2018), 751–763. https://doi.org/10.1016/j.cej.2018.12.073

Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19(November), 360–369. https://doi.org/10.1016/j.rser.2012.11.030

Cevallos-Mendoza, J., Amorim, C. G., Rodríguez-Díaz, J. M., & Montenegro, M. da C. B. S. M. (2022). Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes, 12(6), 1–23. https://doi.org/10.3390/membranes12060570

Chau, N. D. G., Sebesvari, Z., Amelung, W., & Renaud, F. G. (2015). Pesticide Pollution of Multiple Drinking Water Sources in the Mekong Delta, Vietnam: evidence from two provinces. Environmental Science and Pollution Research, 22(12), 9042–9058.

Chee, T. Y., Mohd Yusoff, A. R., Abdullah, F., Asyraf Wan Mahmood, W. M., Fathi Jasni, M. J., Nizam Nik Malek, N. A., Buang, N. A., & Govarthanan, M. (2022). Fabrication, Characterization and Application of Electrospun Polysulfone Membrane for Phosphate Ion Removal in Real Samples. Chemosphere, 303, 135228. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135228

Choo, G., & Oh, J.-E. (2020). Seasonal Occurrence and Removal of Organophosphate Esters in Conventional and Advanced Drinking Water Treatment Plants. Water Research, 186, 116359. https://doi.org/https://doi.org/10.1016/j.watres.2020.116359

Company, H. (2019). Nitrate Method 8039. Water Analysis Handbook (WAH), 584(10), 1–8.

Company, H. (2021). PhosVer 3 with Persulfate UV Oxidation (Method 8007). Water Analysis Handbook (WAH), 1–8. https://www.hach.com/asset-get.download-en.jsa?id=7639983826

Costa, D., Aziz, U., Elliott, J., Baulch, H., Roy, B., Schneider, K., & Pomeroy, J. (2020). The Nutrient App: Developing a Smartphone Application for on-site Instantaneous community-based NO3 and PO4 monitoring. Environmental Modelling & Software, 133, 104829. https://doi.org/https://doi.org/10.1016/j.envsoft.2020.104829

Davis, M. L. (2010). Water and Wastewater Engineering: Design Principles and Practice. McGraw-Hill Education.

Devlin, M., & Brodie, J. (2023). Nutrients and Eutrophication BT - Marine Pollution – Monitoring, Management and Mitigation (A. Reichelt-Brushett (ed.); pp. 75–100). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-10127-4_4

Fathanah, U., Machdar, I., Riza, M., Rahman, N. A., Lubis, M. R., Qibtiyah, M., & Jihannisa, R. (2019). Pembuatan dan Karakterisasi Membran Polyethersulfone ( PES ) -Kitosan Secara Blending Polimer. Proceeding Seminar Nasional Politeknik Negeri Lhokseumawe, 3(1), 62–66.

Hidup, K. L. (2004). Keputusan Menteri Lingkungan Hidup Nomor 51 Tahun 2004 Tentang Baku Mutu Air Laut.

Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium Removal from Aqueous Solutions by Using Natural Chinese (Chende) Zeolite as Adsorbent. Journal of Hazardous Materials, 175(1–3), 247–252.

Hussain, D. (2019). Thousands of worshippers pray in river awash with toxic foam that provides drinking water to Delhi’s 20 million residents (which is not even in India’s top 10 most polluted cities). Daily Mail Online. https://www.dailymail.co.uk/news/article-7664563/Thousands-worshippers-pray-river-polluted-toxic-FOAM-near-Delhi.html

Khairunna, N., Agustina, S., Setiawan, I., Ramadhaniaty, M., Sakinah, R., Keumala, S., & Ondara, K. (2021). Status Kualitas Perairan Utara Aceh Ditinjau Dari Konsentrasi TSS , BOD5, Dan DO The Status of The Water Quality of Northern Aceh in Terms of. Jurnal Kelautan Dan Perikanan Indonesia, 1(3), 135–144.

Komaba, H., & Fukagawa, M. (2016). Phosphate—a Poison for Humans? Kidney International, 90(4), 753–763. https://doi.org/10.1016/j.kint.2016.03.039

Lewis, J. L. (2022). Overview of Disorders of Phosphate Concentration. In Merck & Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved. https://www.merckmanuals.com/professional/endocrine-and-metabolic-disorders/electrolyte-disorders/overview-of-disorders-of-phosphate-concentration?query=Serum Phosphate

Li, L., Guo, W., Zhang, S., Guo, R., & Zhang, L. (2023). Electrospun Nanofiber Membrane : An Efficient and Environmentally Friendly Material for the Removal of Metals and Dyes.

Lun, Y. E., Abdullah, S. R. S., Hasan, H. A., Othman, A. R., Kurniawan, S. B., Imron, M. F., AL Falahi, O. A., Said, N. S. M., Sharuddin, S. S. N., & Ismail, N. ‘Izzati. (2022). Integrated Emergent-Floating Planted Reactor for Textile Effluent: Removal Potential, Optimization of Operational Conditions And Potential Forthcoming Waste Management Strategy. Journal of Environmental Management, 311(October 2021), 114832. https://doi.org/10.1016/j.jenvman.2022.114832

Majidi, S., Erfan-Niya, H., Azamat, J., Cruz-Chú, E. R., & Walther, J. H. (2022). The Separation Performance of Porous Carbon Nitride Membranes for Removal of Nitrate and Nitrite Ions from Contaminated Aqueous Solutions: A molecular dynamics study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655, 130208. https://doi.org/https://doi.org/10.1016/j.colsurfa.2022.130208

Malaj, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic Chemicals Jeopardize the Health of Freshwater Ecosystems on the Continental Scale. Proceedings of the National Academy of Sciences, 111(26), 9549–9554.

Mateo-Sagasta, J., Zadeh, S. M., Turral, H., & Burke, J. (2017). Water Pollution from Agriculture: a global review. Executive summary.

Mishra, P. C., & Patel, R. K. (2009). Use of Agricultural Waste for the Removal of nitrate-nitrogen from aqueous medium. Journal of Environmental Management, 90(1), 519–522. https://doi.org/10.1016/j.jenvman.2007.12.003

Morsy, A., Ebeid, M., Soliman, A., Halim, A. A., Ali, A., & Fahmy, M. (2022). Evaluation of the Water Quality and the Eutrophication Risk in Mediterranean sea area: A case study of the Port Said Harbour, Egypt. Environmental Challenges, 7(February), 100484. https://doi.org/10.1016/j.envc.2022.100484

Ngatia, L., M. Grace III, J., Moriasi, D., & Taylor, R. (2019). Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. Monitoring of Marine Pollution, 1–17. https://doi.org/10.5772/intechopen.81869

Othman, N. H., Alias, N. H., Fuzil, N. S., Marpani, F., Shahruddin, M. Z., Chew, C. M., Ng, K. M. D., Lau, W. J., & Ismail, A. F. (2022). A Review on the Use of Membrane Technology Systems In Developing Countries. Membranes, 12(1). https://doi.org/10.3390/membranes12010030

Owodunni, A. A., Ismail, S., Kurniawan, S. B., Ahmad, A., Imron, M. F., & Abdullah, S. R. S. (2023). A review on Revolutionary Technique For Phosphate Removal In Wastewater Using Green Coagulant. Journal of Water Process Engineering, 52(July 2022), 103573. https://doi.org/10.1016/j.jwpe.2023.103573

Pemerintah Republik Indonesia. (2021). Peraturan Pemerintah Nomor 22 Tahun 2021 tentang Pedoman Perlindungan dan Pengelolaan Lingkungan Hidup. Sekretariat Negara Republik Indonesia, 1(078487A), 483. http://www.jdih.setjen.kemendagri.go.id/

Shen, M., Song, B., Zhu, Y., Zeng, G., Zhang, Y., Yang, Y., Wen, X., Chen, M., & Yi, H. (2020). Removal of Microplastics Via Drinking Water Treatment: Current knowledge and future directions. Chemosphere, 251, 126612. https://doi.org/10.1016/j.chemosphere.2020.126612

Smith, M. ., Cross, K. ., Paden, M., & Laban, P. (2016). Managing Groundwater Sustainability. In Water Policy (Vol. 11, Issue 5).

Spellman, F. R. (2017). The Drinking Water Handbook. In CRC Press. https://doi.org/10.5860/choice.38-0968

Tan, H.-F., Ooi, B. S., & Leo, C. P. (2020). Future Perspectives of nanocellulose-based embrane for water treatment. Journal of Water Process Engineering, 37, 101502. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101502

Ward, M. H., deKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B. T., & VanDerslice, J. (2005). Workgroup report: Drinking-water Nitrate and Health - Recent Findings and Research Needs. Environmental Health Perspectives, 113(11), 1607–1614. https://doi.org/10.1289/ehp.8043

Wei, Y., Ding, D., Gu, T., Xu, Y., Sun, X., Qu, K., Sun, J., & Cui, Z. (2023). Ocean Acidification and Warming Significantly Affect Coastal Eutrophication and Organic Pollution: A case study in the Bohai Sea. Marine Pollution Bulletin, 186(August 2022), 114380. https://doi.org/10.1016/j.marpolbul.2022.114380

Yekrang, J., Mohseni, L., & Etemadi, H. (2023). Water Treatment Using PVC/TPU/PC Electrospun Nanofiber Membranes. Fibers and Polymers, 1–14.

Yudhistira, M. H., Karimah, I. D., & Maghfira, N. R. (2022). The Effect of Port Development on Coastal Water Quality: Evidence of Eutrophication States in Indonesia. Ecological Economics, 196(March), 107415. https://doi.org/10.1016/j.ecolecon.2022.107415

Zeng, Y., Li, Y., Jia, X., Hu, G., Bi, H., Zhang, X., Du, B., & Chang, F. (2023). A Novel Electric Spark Precipitation and Electrospinning Strategy To Prepare Cerium Hydroxide Nanocomposite for Phosphate Uptake from Aqueous Solutions. Journal of Environmental Chemical Engineering, 11(3), 110178. https://doi.org/https://doi.org/10.1016/j.jece.2023.110178

Zeytuncu, B., Sengur-Tasdemir, R., Pasaoglu, M. E., Kaya, R., Turken, T., & Koyuncu, I. (2023). Chapter 12 - Electrospun membranes for Microfiltration (A. Kargari, T. Matsuura, & M. M. A. B. T.-E. and N. M. Shirazi (eds.); pp. 325–345). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-823032-9.00013-1




DOI: http://dx.doi.org/10.22373/ekw.v9i2.17861

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Auliya Anwar, Cut Meurah Rosnelly, Ichwana Ramli, Nasrul Arahman, Afrillia Fahrina

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter