Removal of Metanil Yellow and Tartrazine Using Chitosan As an Alternative Coagulant

Dahlena Ariyani, Utami Irawati, Dewi Umaningrum, Munaa Masyu Abbas, Ihda Raihana

Abstract


Abstract: The textile industry is one of the industries that heavily uses dyes. Wastewater coming from these industries will have a negative impact on the environment if it is released without prior treatment. Examples of synthetic dyes that are toxic to the environment are metanil yellow and tartrazine. In light of the presence of those dyes that might harm the environment, proper treatment of wastewater containing those dyes is needed. Treatment using nature-based coagulants is one of the methods that can be implemented to reduce the concentration of dyes in the environment. This study investigates the performance of chitosan as an alternative nature-based coagulant compared to the two most commonly used synthetic coagulants, i.e., alum and poly aluminum chloride (PAC), in removing tartrazine and metanil yellow from solutions. The effects of coagulant dosage and settling time were examined. Based on this study, the dosage needed by chitosan as a coagulant to remove metanil yellow and tartrazine with an initial concentration of 100 ppm was 10 and 100 ppm, respectively. The optimum dosage of PAC to remove 100 ppm of metanil yellow and tartrazine was 50 and 200 ppm, while the optimum dosage of alum to remove those dyes was 50 and 500 ppm. At their respective optimum dosages, the percentages of metanil yellow being removed by chitosan, PAC, and alum were 17.165%, 51.009%, and 14.284%, respectively. As for the coagulation of tartrazine, the optimum removal percentages by chitosan, PAC, and alum were 90.559%, 84.770%, and 29.178%, respectively. Chitosan and PAC exhibited more efficient coagulation in terms of the settling time needed to have optimum results, which was 60 minutes for both coagulants. Alum needed a longer settling time as, within the timeframe being studied, the removal of dyes by alum had not yet reached equilibrium.

Abstrak:  Industri tekstil merupakan industri yang menggunakan bahan pewarna sebagai bahan baku untuk hasil produksinya. Limbah hasil produksi ini terkadang masih mengandung zat warna dalam jumlah besar tentunya sehingga dapat berdampak negatif bagi lingkungan.Contoh zat warna sintetik yang dapat mencemari lingkungan adalah metanil yellow dan tartrazin. Terkait keberadaan kedua macam zat warna tersebut yang dapat menurunkan kualitas lingkungan perairan, diperlukan metode pengolahan yang ramah lingkungan atas zat warna tersebut, misalnya dengan koagulasi menggunakan koagulan berbahan dasar alami. Penelitian ini bertujuan untuk mengetahui perbandingan kinerja koagulan kitosan, tawas, dan PAC dalam menurunkan kadar tartrazin dan metanil yellow (MY) dalam larutan. Koagulasi terhadap sampel zat warna dilakukan dengan menggunakan seperangkat instrumen jar test standar, dan konsentrasi zat warna diukur dengan menggunakan spektrofotometer UV Vis. Variabel yang diamati dalam penelitian ini meliputi dosis koagulan dan waktu sedimentasi. Hasil penelitian menunjukkan bahwa dosis optimum kitosan untuk menurunkan kadar MY dan tartrazin dalam larutan dengan konsentrasi awal zat warna 100 ppm adalah sebesar 10 dan 100 ppm. Dosis optimum PAC untuk menurunkan kadar MY 100 ppm dan tartrazine 100 ppm adalah 50 dan 200 ppm, dan dosis optimum tawas untuk menurunkan kadar MY 100 ppm dan tartrazine 100 ppm masing-masing adalah 50 ppm dan 500 ppm. Pada dosis optimum tersebut, penurunan kadar MY oleh kitosan, PAC dan tawas masing-masing adalah sebesar 17,165%; 51,009% dan 14,284%. Untuk koagulasi tartrazin, penurunan kadar tartrazin oleh kitosan, PAC dan tawas pada dosis optimum masing-masing adalah sebesar 90,559%, 84,770%, dan 29,178%. Kitosan dan PAC merupakan koagulan yang lebih efisien ditinjau dari waktu sedimentasi yang dibutuhkan untuk memperoleh hasil yang optimum, yaitu sebesar 60 menit. Tawas membutuhkan waktu yang lebih lama, dimana dalam kisaran waktu yang diamati, persentase penurunan kadar zat warna masih belum mencapai kestabilan. Hasil penelitian ini selanjutnya dapat dikembangkan sebagai alternatif untuk pengolahan limbah industri, terutama limbah industri yang menggunakan zat warna dengan intensitas tinggi.


Keywords


coagulation; chitosan; dyes

Full Text:

PDF

References


Abdullah, H. A., & Jaeel, A. J. (2019). Turbidity, color and chemical oxygen demand removals from synthetic textile wastewater using chitosan as a coagulant. IOP Conference Series: Materials Science and Engineering, 584(1), 12016.

Abujazar, M. S. S., Karaağaç, S. U., Amr, S. S. A., Alazaiza, M. Y. D., & Bashir, M. J. K. (2022). Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: A review. Journal of Cleaner Production, 345, 131133.

Alibeigi-Beni, S., Habibi Zare, M., Pourafshari Chenar, M., Sadeghi, M., & Shirazian, S. (2021). Design and optimization of a hybrid process based on hollow-fiber membrane/coagulation for wastewater treatment. Environmental Science and Pollution Research, 28, 8235–8245.

Amin, K. A., & Al-Shehri, F. S. (2018). Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: A review. African Journal of Biotechnology, 17(6), 139–149.

Arsenault-Escobar, S., Fuentes-Galvez, J. F., Orellana, C., Bollo, S., Sierra–Rosales, P., & Miranda-Rojas, S. (2023). Unveiling the tartrazine binding mode with ds–DNA by UV–visible spectroscopy, electrochemical, and QM/MM methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 292, 122400.

Ashok, V., Agrawal, N., Durgbanshi, A., Esteve-Romero, J., & Bose, D. (2015). A novel micellar chromatographic procedure for the determination of metanil yellow in foodstuffs. Analytical Methods, 7(21), 9324–9330.

Bhalkaran, S., & Wilson, L. D. (2016). Investigation of self-assembly processes for chitosan-based coagulant-flocculant systems: a mini-review. International Journal of Molecular Sciences, 17(10), 1662.

Bhernama, B. G., Safni, S., & Syukri, S. (2015). Degradasi Zat Warna Metanil Yellow Secara Fotolisis Dan Penyinaran Matahari Dengan Penambahan Katalis TiO 2-anatase dan SnO 2. Elkawnie: Journal of Islamic Science and Technology, 1(1), 49–62.

Cui, H., Huang, X., Yu, Z., Chen, P., & Cao, X. (2020). Application progress of enhanced coagulation in water treatment. RSC Advances, 10(34), 20231–20244.

Cui, X., Zhou, D., Fan, W., Huo, M., Crittenden, J. C., Yu, Z., Ju, P., & Wang, Y. (2016). The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: A case study. Chemosphere, 157, 224–231.

Dehkordi, S. H., Farhadian, S., & Ghasemi, M. (2021). The interaction between the azo dye tartrazine and α-chymotrypsin enzyme: molecular dynamics simulation and multi-spectroscopic investigations. Journal of Molecular Liquids, 344, 117931.

Dutta, P. K., & Singh, J. (2008). Conformational study of chitosan: a review. Proceedings of the National Academy of Sciences India Part IV, 78, 255–270.

Ghosh, D., Singha, P. S., Firdaus, S. B., & Ghosh, S. (2017). Metanil yellow: The toxic food colorant. Asian Pacific Journal of Health Sciences, 4(4), 65–66.

Gita, S., Hussan, A., & Choudhury, T. G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol, 35(3C), 2349–2353.

Hendrawati, H., Sumarni, S., & Nurhasni, N. (2016). Penggunaan Kitosan sebagai Koagulan Alami dalam Perbaikan Kualitas Air Danau. Jurnal Kimia VALENSI, 1(1), 1–11.

Hossain, S., & Hossain, F. (2020). Chitosan: An effective material for textile waste water management. Int. J. Adv. Res., 8, 26–34.

Irawati, U., Maharini, G., & Ariyani, D. (2023). Comparing the performance of chitosan in two different solvents for coagulation of peat water. AIP Conference Proceedings, 2634(1), 20071.

Jadhav, M. V, & Mahajan, Y. S. (2013). Investigation of the performance of chitosan as a coagulant for flocculation of local clay suspensions of different turbidities. KSCE Journal of Civil Engineering, 17(2), 328–334.

Khan, I. S., Ali, M. N., Hamid, R., & Ganie, S. A. (2020). Genotoxic effect of two commonly used food dyes metanil yellow and carmoisine using Allium cepa L. as indicator. Toxicology Reports, 7, 370–375.

Kourani, K., Kapoor, N., Badiye, A., & Shukla, R. K. (2020). Detection of synthetic food color “Metanil yellow” in sweets: A systematic approach. JPC–Journal of Planar Chromatography–Modern TLC, 33(4), 413–418.

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290.

Leulescu, M., Rotaru, A., Pălărie, I., Moanţă, A., Cioateră, N., Popescu, M., Morîntale, E., Bubulică, M. V., Florian, G., & Hărăbor, A. (2018). Tartrazine: Physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye. Journal of Thermal Analysis and Calorimetry, 134, 209–231.

Lichtfouse, E., Morin-Crini, N., Fourmentin, M., Zemmouri, H., do Carmo Nascimento, I. O., Queiroz, L. M., Tadza, M. Y. M., Picos-Corrales, L. A., Pei, H., Wilson, L. D., & Crini, G. (2019). Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 17(4), 1603–1621. https://doi.org/10.1007/s10311-019-00900-1

Lim, H. S., Choi, E., Lee, J.-H., Lee, G., & Kim, M. (2020). Analysis of illegal colourants (citrus red II, diethyl yellow, dimethyl yellow, metanil yellow and rhodamine B) in foods by LC-UV and LC-MS/MS. Food Additives & Contaminants: Part A, 37(6), 895–904.

Lin, J.-L., Huang, C., Pan, J. R., & Wang, D. (2008). Effect of Al (III) speciation on coagulation of highly turbid water. Chemosphere, 72(2), 189–196.

Maria, A., Mayasari, E., Irawati, U., & Zulfikurrahman. (2020). Comparing the effectiveness of chitosan and conventional coagulants for coal wastewater treatment. IOP Conference Series: Materials Science and Engineering, 980(1). https://doi.org/10.1088/1757-899X/980/1/012077

Mcyotto, F., Wei, Q., Macharia, D. K., Huang, M., Shen, C., & Chow, C. W. K. (2021). Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal, 405, 126674.

Popadić, M., Marinović, S., Mudrinić, T., Milutinović Nikolić, A., Banković, P., Đorđević, I., & Janjić, G. (2021). Application of quantum chemical calculation in defining peaks in uv-vis spectra of oxidative tartrazine degradation. Proceedings-15th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Physical Chemistry 2021, September 20-24 2021, Belgrade, Serbia, 1, 132–134.

Pratiwi, R. A., & Nandiyanto, A. B. D. (2022). How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds. Indonesian Journal of Educational Research and Technology, 2(1), 1–20.

Renault, F., Sancey, B., Badot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes - An eco-friendly approach. European Polymer Journal, 45(5), 1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

Sakare, P., Giri, S. K., Mohapatra, D., & Tripathi, M. K. (2022). UV-Vis spectroscopic investigation on color change kinetics of lac dye as influenced by some food spoilage metabolites: validation for milk quality monitoring. Pigment & Resin Technology.

Soros, A., Amburgey, J. E., Stauber, C. E., Sobsey, M. D., & Casanova, L. M. (2019). Turbidity reduction in drinking water by coagulation-flocculation with chitosan polymers. Journal of Water and Health, 17(2), 204–218.

Szyguła, A., Guibal, E., Ruiz, M., & Sastre, A. M. (2008). The removal of sulphonated azo-dyes by coagulation with chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330(2–3), 219–226.

Wang, W., Yue, Q., Li, R., Song, W., Gao, B., & Shen, X. (2017). Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 78, 423–430.

Watcharin, W., & Wiratthikowit, S. (2019). Potential Application of Biopolymer Chitosan and Cationic/Anionic Polymers in Textile Wastewater Treatment. IOP Conference Series: Materials Science and Engineering, 526(1), 12021.

Yang, Z., Gao, B., & Yue, Q. (2010). Coagulation performance and residual aluminum speciation of Al2 (SO4) 3 and polyaluminum chloride (PAC) in Yellow River water treatment. Chemical Engineering Journal, 165(1), 122–132.

Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16, 1193–1226.

Yusuf, M. (2019). Synthetic dyes: a threat to the environment and water ecosystem. Textiles and Clothing, 11–26.




DOI: http://dx.doi.org/10.22373/ekw.v9i2.20145

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dahlena Ariyani, Utami Irawati, Dewi Umaningrum, Munaa Masyu Abbas, Ihda Raihana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter