Effect of Electrode Distance, Stirring Speed and Contact Time on Removal of Polyethylene Microplastics (Microbeads) Using Electrocoagulation Method
DOI:
https://doi.org/10.22373/ekw.v10i1.22195Keywords:
Microbeads, Electrocoagulation, Electrolysis TimeAbstract
Abstract: Daily use of personal care products containing microbeads causes severe problems for the aquatic environment. Greywater is a pathway for microbeads to enter domestic waste and wastewater treatment plants (WWTPs) from personal care products. Their tiny size and hydrophobic nature allow microbeads to escape from WWTPs and end up in surface water. Therefore, processing efforts are needed to remove microbeads, one of which is using the electrocoagulation method with aluminum (Al) electrodes. This study aims to evaluate the performance of the electrocoagulation process using Al electrodes arranged in a monopolar configuration in a batch reactor to see the effect of variations in distance between electrodes of 1, 2.5, and 3.5 cm, stirring speed of 150, 200, and 250 rpm; with the contact time 60, 120, and 180 minutes in removing microbeads from artificial wastewater. This research shows that the best efficiency value of 99.30% occurs in operating conditions with a distance between electrodes of 2.5 cm, a stirring speed of 150 rpm, and a contact time of 180 minutes. ANOVA results showed that distance between electrodes, stirring speed, and contact time significantly affected microbead removal efficiency (p<0.05). The results of this research can be a reference for alternative tertiary processing at WWTPs.
Abstrak: Penggunaan produk perawatan pribadi sehari-hari yang mengandung microbeads menyebabkan masalah serius bagi lingkungan perairan. Greywater merupakan jalur masuknya microbeads ke dalam limbah domestik dan instalasi pengolahan air limbah (IPAL) dari produk perawatan pribadi. Ukurannya yang sangat kecil dan sifat hidrofobiknya memungkinkan microbeads keluar dari IPAL dan berakhir ke air permukaan. Oleh karena itu diperlukan upaya pengolahan untuk menyisihkan microbeads, salah satunya dengan menggunakan metode elektrokoagulasi dengan elektroda aluminium (Al). Penelitian ini bertujuan untuk mengevaluasi kinerja proses elektrokoagulasi menggunakan elektroda Al yang disusun dalam konfigurasi monopolar dalam reaktor batch untuk melihat pengaruh variasi jarak antar elektroda 1, 2,5, dan 3,5 cm, kecepatan pengadukan 150, 200, dan 250 rpm, dan waktu kontak 60, 120, dan 180 menit dalam menyisihkan microbeads dari air limbah artifisial. Penelitian ini menunjukkan bahwa nilai efisiensi terbaik sebesar 99,30% terjadi pada kondisi operasi dengan jarak antar elektroda 2,5 cm, kecepatan pengadukan 150 rpm, dan waktu kontak 180 menit. Hasil ANOVA menunjukkan bahwa jarak antar elektroda, kecepatan pengadukan, dan waktu kontak berpengaruh signifikan terhadap efisiensi penyisihan microbead (p<0,05). Hasil penelitian ini dapat menjadi referensi alternatif pengolahan tersier di IPAL.
References
Ardhianto, R., Anggrainy, A. D., Samudro, G., Triyawan, A., & Bagastyo, A. Y. (2024). A study of continuous-flow electrocoagulation process to minimize chemicals dosing in the full-scale treatment of plastic plating industry wastewater. Journal of Water Process Engineering, 60(December 2023), 105217. https://doi.org/10.1016/j.jwpe.2024.105217
Baciu, A., Pop, A., Bodor, K., Vlaicu, I., & Manea, F. (2015). Assessment of electrocoagulation process for drinking water treatment. Environmental Engineering and Management Journal, 14(6), 1347–1354. https://doi.org/10.30638/eemj.2015.146
Bayar, S., Yildiz, Y. S., Yilmaz, A. E., & Irdemez, S. (2011). The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method. Desalination, 280(1–3), 103–107. https://doi.org/10.1016/j.desal.2011.06.061
Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4(June 2022), 26–36. https://doi.org/10.1016/j.watcyc.2023.01.001
Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. https://doi.org/10.1016/j.watres.2016.01.002
Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., & Friedler, E. (2020). Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environmental Science and Pollution Research, 27(7), 7578–7587. https://doi.org/10.1007/s11356-019-07399-7
Elkhatib, D., Oyanedel-Craver, V., & Carissimi, E. (2021). Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276. https://doi.org/10.1016/j.seppur.2021.118877
Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007
Esfandiari, A., & Mowla, D. (2021). Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Safety and Environmental Protection, 151, 341–354. https://doi.org/10.1016/j.psep.2021.05.027
Gouin, T., Avalos, J., Brunning, I., Brzuska, K., Graaf, J. De, Kaumanns, J., Koning, T., Meyberg, M., Rettinger, K., Schlatter, H., Thomas, J., Welie, R. Van, & Wolf, T. (2015). Use of Micro-Plastic Beads in Cosmetic Products in Europe and Their Estimated Emissions to the North Sea Environment. SOFW Journal, 141(January), 40–46.
Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25–31. https://doi.org/10.1016/j.chemosphere.2017.08.131
Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
Kurniawan, H. F. (2021). Pengaruh Kecepatan Pengadukan dan Jarak Elekroda terhadap Penurunan Kadar COD dan TSS pada Limbah Batik Menggunakan Metode Elektrokoagulasi. Syntax Idea, 3(11), 2386–2394. https://doi.org/10.46799/syntax-idea.v3i11.1578
Liu, F., Zhang, C., Li, H., Offiong, N. A. O., Bi, Y., Zhou, R., & Ren, H. (2023). A systematic review of electrocoagulation technology applied for microplastics removal in aquatic environment. Chemical Engineering Journal, 456(December 2022), 141078. https://doi.org/10.1016/j.cej.2022.141078
Liu, Y., Zhang, X., Jiang, W. M., Wu, M. R., & Li, Z. H. (2021). Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors. Chemical Engineering Journal, 417(March), 129310. https://doi.org/10.1016/j.cej.2021.129310
Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G., & Wang, D. (2021). Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Science of the Total Environment, 786, 147508. https://doi.org/10.1016/j.scitotenv.2021.147508
Mikkola, O. (2020). Estimating microplastic concentrations and loads in cruise ship grey waters. Master’s Thesis. Aalto University.
Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1–3), 199–210. https://doi.org/10.1016/j.jhazmat.2004.08.009
Nandi, B. K., & Patel, S. (2017). Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, S2961–S2968. https://doi.org/10.1016/j.arabjc.2013.11.032
Othmani, A., Kadier, A., Singh, R., Igwegbe, C. A., Bouzid, M., Aquatar, M. O., Khanday, W. A., Bote, M. E., Damiri, F., Gökkuş, Ö., & Sher, F. (2022). A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environmental Research, 215(September). https://doi.org/10.1016/j.envres.2022.114294
Perren, W., Wojtasik, A., & Cai, Q. (2018). Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 3(3), 3357–3364. https://doi.org/10.1021/acsomega.7b02037
Prata, J. C. (2018). Microplastics in wastewater: State of the knowledge on sources, fate and solutions. Marine Pollution Bulletin, 129(1), 262–265. https://doi.org/10.1016/j.marpolbul.2018.02.046
Setyawati, H., Galuh, D., & Yunita, E. (2021). EFFECT OF ELECTRODE DISTANCE AND VOLTAGE ON CR, COD, and TSS REDUCTION IN WASTE WATER TANNING INDUSTRY USING ELECTROCOAGULATOR BATCH. Journal of Sustainable Technology and Applied Science (JSTAS), 2(1), 24–30. https://doi.org/10.36040/jstas.v2i1.3574
Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428(July 2021), 131161. https://doi.org/10.1016/j.cej.2021.131161
Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37(May), 101440. https://doi.org/10.1016/j.jwpe.2020.101440
Talvitie, J., Heinonen, M., Pääkkönen, J. P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495–1504. https://doi.org/10.2166/wst.2015.360
Zhang, L., Liu, J., Xie, Y., Zhong, S., & Gao, P. (2021). Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China. Journal of Cleaner Production, 291, 125968. https://doi.org/10.1016/j.jclepro.2021.125968
Downloads
Published
Issue
Section
License
Proposed Policy for Journals That Offer Open Access Authors who publish with the Elkawnie journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).