Effect of Electrode Distance, Stirring Speed and Contact Time on Removal of Polyethylene Microplastics (Microbeads) Using Electrocoagulation Method

Fadhila Fadhila, Zulkarnaini Zulkarnaini, Amir Husin, Ferdy Ashari Syawal

Abstract


Abstract: Daily use of personal care products containing microbeads causes severe problems for the aquatic environment. Greywater is a pathway for microbeads to enter domestic waste and wastewater treatment plants (WWTPs) from personal care products. Their tiny size and hydrophobic nature allow microbeads to escape from WWTPs and end up in surface water. Therefore, processing efforts are needed to remove microbeads, one of which is using the electrocoagulation method with aluminum (Al) electrodes. This study aims to evaluate the performance of the electrocoagulation process using Al electrodes arranged in a monopolar configuration in a batch reactor to see the effect of variations in distance between electrodes of 1, 2.5, and 3.5 cm, stirring speed of 150, 200, and 250 rpm; with the contact time 60, 120, and 180 minutes in removing microbeads from artificial wastewater. This research shows that the best efficiency value of 99.30% occurs in operating conditions with a distance between electrodes of 2.5 cm, a stirring speed of 150 rpm, and a contact time of 180 minutes. ANOVA results showed that distance between electrodes, stirring speed, and contact time significantly affected microbead removal efficiency (p<0.05). The results of this research can be a reference for alternative tertiary processing at WWTPs.

Abstrak: Penggunaan produk perawatan pribadi sehari-hari yang mengandung microbeads menyebabkan masalah serius bagi lingkungan perairan. Greywater merupakan jalur masuknya microbeads ke dalam limbah domestik dan instalasi pengolahan air limbah (IPAL) dari produk perawatan pribadi. Ukurannya yang sangat kecil dan sifat hidrofobiknya memungkinkan microbeads keluar dari IPAL dan berakhir ke air permukaan. Oleh karena itu diperlukan upaya pengolahan untuk menyisihkan microbeads, salah satunya dengan menggunakan metode elektrokoagulasi dengan elektroda aluminium (Al). Penelitian ini bertujuan untuk mengevaluasi kinerja proses elektrokoagulasi menggunakan elektroda Al yang disusun dalam konfigurasi monopolar dalam reaktor batch untuk melihat pengaruh variasi jarak antar elektroda 1, 2,5, dan 3,5 cm, kecepatan pengadukan 150, 200, dan 250 rpm, dan waktu kontak 60, 120, dan 180 menit dalam menyisihkan microbeads dari air limbah artifisial. Penelitian ini menunjukkan bahwa nilai efisiensi terbaik sebesar 99,30% terjadi pada kondisi operasi dengan jarak antar elektroda 2,5 cm, kecepatan pengadukan 150 rpm, dan waktu kontak 180 menit. Hasil ANOVA menunjukkan bahwa jarak antar elektroda, kecepatan pengadukan, dan waktu kontak berpengaruh signifikan terhadap efisiensi penyisihan microbead (p<0,05). Hasil penelitian ini dapat menjadi referensi alternatif pengolahan tersier di IPAL.


Keywords


Microbeads; Electrocoagulation; Electrolysis Time

Full Text:

PDF

References


Ardhianto, R., Anggrainy, A. D., Samudro, G., Triyawan, A., & Bagastyo, A. Y. (2024). A study of continuous-flow electrocoagulation process to minimize chemicals dosing in the full-scale treatment of plastic plating industry wastewater. Journal of Water Process Engineering, 60(December 2023), 105217. https://doi.org/10.1016/j.jwpe.2024.105217

Baciu, A., Pop, A., Bodor, K., Vlaicu, I., & Manea, F. (2015). Assessment of electrocoagulation process for drinking water treatment. Environmental Engineering and Management Journal, 14(6), 1347–1354. https://doi.org/10.30638/eemj.2015.146

Bayar, S., Yildiz, Y. S., Yilmaz, A. E., & Irdemez, S. (2011). The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method. Desalination, 280(1–3), 103–107. https://doi.org/10.1016/j.desal.2011.06.061

Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4(June 2022), 26–36. https://doi.org/10.1016/j.watcyc.2023.01.001

Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. https://doi.org/10.1016/j.watres.2016.01.002

Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., & Friedler, E. (2020). Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environmental Science and Pollution Research, 27(7), 7578–7587. https://doi.org/10.1007/s11356-019-07399-7

Elkhatib, D., Oyanedel-Craver, V., & Carissimi, E. (2021). Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276. https://doi.org/10.1016/j.seppur.2021.118877

Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007

Esfandiari, A., & Mowla, D. (2021). Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Safety and Environmental Protection, 151, 341–354. https://doi.org/10.1016/j.psep.2021.05.027

Gouin, T., Avalos, J., Brunning, I., Brzuska, K., Graaf, J. De, Kaumanns, J., Koning, T., Meyberg, M., Rettinger, K., Schlatter, H., Thomas, J., Welie, R. Van, & Wolf, T. (2015). Use of Micro-Plastic Beads in Cosmetic Products in Europe and Their Estimated Emissions to the North Sea Environment. SOFW Journal, 141(January), 40–46.

Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25–31. https://doi.org/10.1016/j.chemosphere.2017.08.131

Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043

Kurniawan, H. F. (2021). Pengaruh Kecepatan Pengadukan dan Jarak Elekroda terhadap Penurunan Kadar COD dan TSS pada Limbah Batik Menggunakan Metode Elektrokoagulasi. Syntax Idea, 3(11), 2386–2394. https://doi.org/10.46799/syntax-idea.v3i11.1578

Liu, F., Zhang, C., Li, H., Offiong, N. A. O., Bi, Y., Zhou, R., & Ren, H. (2023). A systematic review of electrocoagulation technology applied for microplastics removal in aquatic environment. Chemical Engineering Journal, 456(December 2022), 141078. https://doi.org/10.1016/j.cej.2022.141078

Liu, Y., Zhang, X., Jiang, W. M., Wu, M. R., & Li, Z. H. (2021). Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors. Chemical Engineering Journal, 417(March), 129310. https://doi.org/10.1016/j.cej.2021.129310

Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G., & Wang, D. (2021). Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Science of the Total Environment, 786, 147508. https://doi.org/10.1016/j.scitotenv.2021.147508

Mikkola, O. (2020). Estimating microplastic concentrations and loads in cruise ship grey waters. Master’s Thesis. Aalto University.

Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1–3), 199–210. https://doi.org/10.1016/j.jhazmat.2004.08.009

Nandi, B. K., & Patel, S. (2017). Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry, 10, S2961–S2968. https://doi.org/10.1016/j.arabjc.2013.11.032

Othmani, A., Kadier, A., Singh, R., Igwegbe, C. A., Bouzid, M., Aquatar, M. O., Khanday, W. A., Bote, M. E., Damiri, F., Gökkuş, Ö., & Sher, F. (2022). A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environmental Research, 215(September). https://doi.org/10.1016/j.envres.2022.114294

Perren, W., Wojtasik, A., & Cai, Q. (2018). Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 3(3), 3357–3364. https://doi.org/10.1021/acsomega.7b02037

Prata, J. C. (2018). Microplastics in wastewater: State of the knowledge on sources, fate and solutions. Marine Pollution Bulletin, 129(1), 262–265. https://doi.org/10.1016/j.marpolbul.2018.02.046

Setyawati, H., Galuh, D., & Yunita, E. (2021). EFFECT OF ELECTRODE DISTANCE AND VOLTAGE ON CR, COD, and TSS REDUCTION IN WASTE WATER TANNING INDUSTRY USING ELECTROCOAGULATOR BATCH. Journal of Sustainable Technology and Applied Science (JSTAS), 2(1), 24–30. https://doi.org/10.36040/jstas.v2i1.3574

Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428(July 2021), 131161. https://doi.org/10.1016/j.cej.2021.131161

Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37(May), 101440. https://doi.org/10.1016/j.jwpe.2020.101440

Talvitie, J., Heinonen, M., Pääkkönen, J. P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495–1504. https://doi.org/10.2166/wst.2015.360

Zhang, L., Liu, J., Xie, Y., Zhong, S., & Gao, P. (2021). Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China. Journal of Cleaner Production, 291, 125968. https://doi.org/10.1016/j.jclepro.2021.125968




DOI: http://dx.doi.org/10.22373/ekw.v10i1.22195

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fadhila Fadhila, Zulkarnaini Zulkarnaini, Amir Husin, Ferdy Ashari Syawal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter