Effect of Temperature on Yield Product and Characteristics of Bio-oil From Pyrolysis of Spirulina platensis Residue

Siti Jamilatun, Yeni Elisthatiana, Siti Nurhalizatul Aini, Ilham Mufandi, Arief Budiman

Abstract


Abstract : Dependence on the use of fossil fuels in Indonesia is still quite high, especially crude oil; if no new energy reserves found, it will disrupt long-term energy availability. Biofuel is a renewable energy source derived from biomass, such as the type of microalgae spirulina platensis (SP). Solid residues from SP extraction still contained high levels of protein and carbohydrates. This solid residue can be processed by pyrolysis to produce bio-oil, water phase, charcoal, and gas. Bio-oil and gas products can use as fuel, charcoal can use for pharmaceutical needs, and the water phase as a chemical can use in food and health. The pyrolysis process carried out in a fixed-bed reactor with temperature ranging from 300-600°C. Heating was carried out by electricity through a nickel wire wrapped outside the reactor. Pyrolysis product in the form of gas condensed in the condenser, the condensate formed measured by weight. Char weight measured after the pyrolysis process completed. At the same time, non-condensable gas calculated by gravity from the initial weight difference of SPR minus liquid weight (bio-oil and water phase) and char. SPR samples were analyzed proximate and ultimate, while bio-oil products examined by the GC-MS method. The experimental results showed that the optimum pyrolysis temperature at 500ºC produced by 18.45% of bio-oil, 20% of the water phase, 32.02 of charcoal, and 29.54% of gas by weight. GC-MS results from bio-oil consisted of ketones, aliphatics, nitrogen, alcohol, acids, while PAHs, phenols, and aromatics not found.

Abstrak : Ketergantungan penggunaan bahan bakar fosil di Indonesia masih cukup tinggi terutama minyak mentah, jika tidak ditemukan cadangan energi baru maka akan mengganggu ketersediaan energi jangka panjang. Biofuel adalah salah satu sumber energi terbarukan yang berasal dari biomassa seperti jenis mikroalga spirulina platensis (SP). Residu padat dari ekstraksi SP masih mengandung protein dan karbohidrat yang cukup tinggi. Residu padat ini dapat diproses dengan pirolisis untuk menghasilkan bio-minyak, fase air, arang, dan gas. Produk bio-minyak dan gas dapat digunakan untuk bahan bakar, arang dapat digunakan untuk kebutuhan farmasi, dan fase air sebagai bahan kimia dapat digunakan di bidang makanan dan kesehatan. Proses pirolisis dilakukan dalam reaktor fixed-bed dengan suhu 300-600°C. Pemanasan dilakukan dengan listrik melalui kawat nikel yang dibungkus di luar reaktor. Produk pirolisis berupa gas dikondensasi dalam kondensor, kondensat yang terbentuk diukur beratnya. Berat char diukur setelah proses pirolisis selesai, sementara gas yang tidak dapat dikondensasi dihitung beratnya dari perbedaan bobot awal SPR dikurangi bobot cair (bio-oil dan fase air) dan char. Sampel SPR dianalisis proksimat dan ultimat, sedangkan produk bio-minyak dianalisis dengan metode GC-MS. Hasil percobaan menunjukkan bahwa suhu optimum pirolisis adalah 500ºC yang menghasilkan bio-oil, water phase, arang, dan gas berturut-turut adalah 18,45; 20;  32,02 dan 29,54 % berat. Hasil GC-MS dari bio-oil terdiri dari keton, alifatik, nitrogen, alkohol dan asam, sedangkan PAH, fenol dan tidak ditemukan.


Keywords


Bio-oil; Pyrolysis; Spirulina platensis

Full Text:

PDF

References


Badan Pengkajian dan Penerapan Teknologi-Outlook Energi Indonesia 2018[Online]. BPPT−OEI, 2018.

Basu, P. (2010). Biomass gasification and pyrolysis. Practical design and theory. Elsevier Inc.

Chen, W., K., Xia, M., Yang, H., Chen, Y., X., Che, Q., (2018), Hanping Chen, Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst, Energy, 157, 472-482.

Choi, Y-K., Choi, T-R., Gurav, R., Bhatia, S.K., Park, Y-L., Kim, H.J., Kan, E., Yang, Y-H., (2020), the Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures, Science of the Total Environment, 710, 136-282.

Gronli MG. (1996). A theoretical and experimental study of the thermal degradation of biomass [Ph.D. thesis]. The Norwegian University of Science and Technology.

Gultom, S. O., Zamalloa, C., & Hu, B. (2014). Microalgae Harvest through Fungal Palletization-Co-Culture of Chlorella Vulgaris and Aspergillus niger. Energies. 7(7):4417-442.

Hu, Z., Zheng, Y., Yan, F., Xiao, B., and Liu, S. (2013). Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization, Energy, 52, 119–125.

Hu, X., and Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialization stage, Journal of Energy Chemistry, 39, 109–143.

Jamilatun, S., Kusuma, D., Shakti, A.S.S., Ferdiant, F. (2010), Pembuatan Biocoal Sebagai Bahan Bakar Alternatif dari Batubara dengan Campuran Arang Serbuk Gergaji Kayu Jati, Glugu dan Sekam Padi, Prosiding Seminar Nasional Teknik Kimia “Kejuangan” , Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia , ISSN 1693 – 4393.

Jamilatun, Intan Dwi, I., Elza Novita, P., (2014), Karakteristik Arang Aktif dari Tempurung Kelapa dengan Pengaktivasi H2SO4 Variasi Suhu dan Waktu, Simposium Nasional Teknologi Terapan (SNTT) II 2014, Universitas Muhammadiyah Surakarta, ISSN: 2339-028X.

Jamilatun, S dan Salamah, S., (2015), Peningkatan Kualitas Asap Cair dengan Menggunakan Arang Aktif, SNTT FGDT 2015, Universitas Muhammadiyah Surakarta.

Jamilatun, S., Aslihati, L. , Suminar, E.W., (2016), Pengaruh perendaman ikan nila dengan asap cair (liquid smoke) terhadap daya simpan", Prosiding Semnastek, 2016.

Jamilatun, S., Budiman, A., Budhijanto, and Rochmadi, (2017), Non-catalytic Slow Pyrolysis of Spirulina platensis Residue for Production of Liquid Biofuels", International Journal of Renewable Energy Research, 7(4), 1901–1908.

Jamilatun S. dan Salamah, S., (2017), Pemanfaatan Asap Cair Food Grade yang Dimurnikan dengan Arang Aktif sebagai Pengawet Ikan Nila, Eksergi, 14 (2), 29-34.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A. and Budiman, A., 2019, Valuable Chemicals Derived from Pyrolysis Liquid Products of Spirulina platensis Residue, Indones. J. Chem., 19 (3), 703 – 711.

Jamilatun , S., Setyawan , M., Mufandi , I. dan Budiman, A. (2019) Potensi Produk Cair (Oil phase dan Water phase) Dari Pirolisis Mikroalga Sebagai Pengawet Makanan, Chemica Jurnal Teknik Kimia, Vol.6 No.2. hal 83-93.

Kan, T., Strezov, V. and T.J., (2016), Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renewable and Sustainable, Energy Reviews, 57, 1126–1140.

Miao, X., Wu Q., and Yang, C. (2004). Fast pyrolysis of microalgae to produce renewable Fuels, J. Anal. Appl. Pyrol., 71, 855–863.

Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2019). Produksi Bio-oil dari Rumput Gajah dengan Fast Pyrolysis menggunakan Circulating Fluidized Bed Reactor (CFBr) dengan Kapasitas 45 Kg/H. CHEMICA: Jurnal Teknik Kimia, 5(2), 37. https://doi.org/10.26555/chemica.v5i2.12484

Mufandi, I. Wasakorn Treede, Piyapong Singbua, and Ratchaphon Suntivarakorn. (2020). The Comparison of Bio-oil Production from Sugarcane Trash, Napier Grass, and Rubber Tree in The Circulating Fluidized Bed Reactor. TEST Engineering and Management Journal 82(4557):4557–63.

Schenk, P.M., Skye R. Thomas-Hall, Evan Stephens & Ute C. Marx & Jan H. Mussgnug & Clemens Posten & Olaf Kruse & Ben Hankamer. (2008) Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, Bioenerg. Res.1: 20–43.

Suttibak, S., Sriprateep, K., & Pattiya, A. (2012). Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidized-bed reactor. Energy Procedia, 14, 668–673. https://doi.org/10.1016/j.egypro.2011.12.993.

Treedet, Wasakron, & Suntivarakorn, R. (2011). Sugar Cane Trash Pyrolysis for Bio-oil Production in a Fluidized Bed Reactor. 140–147. https://doi.org/10.3384/ecp11057140.

Treedet, Wasakorn, & Suntivarakorn, R. (2018). Design and operation of a low-cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Processing Technology, 179(March), 17–31. https://doi.org/10.1016/j.fuproc.2018.06.006

Vassilev SV, Baxter D, Andersen LK, Vassileva CG. (2010). An overview of the chemical composition of biomass”. Fuel; 89(5): 913–33. DOI:10.1016/j.fuel.10.022.

Yang, C, Lic, R., Zhanga, B., Qiud, Q., Wange, B., Yangf, H., Dinga, Y. and Wanga, C., (2019). Pyrolysis of microalgae: A critical review, Fuel Processing Technology, 186, 53–72.




DOI: http://dx.doi.org/10.22373/ekw.v6i1.6323

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Siti Jamilatun, Yeni Elisthatiana, Siti Nurhalizatul Aini, Ilham Mufandi, Arif Budiman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter