Mineralogical, Microstructural and Compressive Strength Characterization of Fly Ash as Materials in Geopolymer Cement

Cut Rahmawati, Sri Aprilia, Taufiq Saidi, Teuku Budi Aulia


Abstract: This study was designed to examine the mineral, microstructural, and mechanical strength properties of fly ash and its feasibility as a raw material for geopolymer cement. The study used an experimental method by examining the characteristics of fly ash by X-ray Fluorescence Spectrometer (XRF), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), hydrometer method, Scanning electron microscopy (SEM), and compressive strength testing. For creating the geopolymer cement paste, a concentration of NaOH 10M was used, with a ratio of water/solid = 0.4 and a ratio of Na2SiO3/NaOH = 1 using curring at room temperature. The results showed the geopolymer pastes have a compressive strength of 18.1 MPa and 21.5 MPa after 7 days and 28 days. The XRD results showed a decrease in the peak of 2θ at 26.54° because the amorphous part had transformed into a C-S-H solution in geopolymer cement. This finding was supported by the FTIR spectra results showing Si-O-Si bending vibration and the functional group of AlO2. It showed that Nagan Raya fly ash-based geopolymer is a potential construction material.

Abstrak: Penelitian ini dirancang untuk mendapatkan sifat mineral, mikrostruktural, dan kekuatan mekanis dari fly ash serta kesesuaiannya sebagai material dasar pada semen geopolimer. Metode penelitian yang digunakan adalah metode eksperimen dengan cara  menguji karakteristik dari fly ash dengan pengujian X-ray Fluorescense Spectrometer (XRF), Fourier transform infrared (FTIR) spectoscopy, X-ray diffraction (XRD), hydrometer method, Scanning electron microscopy (SEM) dan kuat tekan.  Untuk pembuatan pasta semen geopolimer digunakan konsentrasi NaOH 10 M, rasio water/solid 0,4 dan rasio Na2SiO3/NaOH = 1 dengan perawatan pada suhu kamar. Hasil menunjukkan setelah 7 hari pasta geopolimer memiliki kuat tekan 18,1 MPa dan 21,5 MPa pada 28 hari. Hasil XRD menunjukkan adanya penurunan puncak 2θ pada 26,54° ini disebabkan karena bagian amorf dari fly ash telah menjadi larutan C-S-H pada semen geopolimer. Hasil ini diperkuat dengan analisis FTIR spectra yang menunjukkan adanya Si-O-Si bending vibration dan gugus fungsi dari AlO2. Hasil menunjukkan fly ash dari Nagan Raya potensial sebagai bahan material konstruksi berbasis geopolimer.


geopolymer; fly ash; epoxy; cement; compressive strength

Full Text:



Agrawal, U., Wanjari, S., & Naresh, D. (2019). Impact of replacement of natural river sand with geopolymer fly ash sand on hardened properties of concrete. Construction and Building Materials, 209. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.134

Aouan, B., Alehyen, S., Fadil, M., Alouani, M. EL, Khabbazi, A., Atbir, A., & Taibi, M. (2021). Compressive strength optimization of metakaolin‐based geopolymer by central composite design. Chemical Data Collections, 31, 100636. https://doi.org/https://doi.org/10.1016/j.cdc.2020.100636

Arioz, E., Arioz, O., & Kockar, O. M. (2020). Geopolymer Synthesis with Low Sodium Hydroxide Concentration. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 525–533. https://doi.org/https://doi.org/10.1007/s40996-019-00336-1

Azevedo, A. G. S., Strecker, K., Barros, L. A., Tonholo, L. F., & Lombardi, C. T. (2019). Effect of Curing Temperature, Activator Solution Composition and Particle Size in Brazilian Fly-Ash Based Geopolymer Production. Materials Research, 22. https://doi.org/https://doi.org/10.1590/1980-5373-mr-2018-0842

Chindaprasirt, P., Homwuttiwong, S., & Sirivivatnanon, V. (2004). Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34(7), 1087–1092. https://doi.org/10.1016/j.cemconres.2003.11.021

Chung, F. H. (1974). Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. I1. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures. J. Appl. Crystallogr, 7, 526–530.

Da Luz, G., Gleize, P. J. P., Batiston, E. R., & Pelisser, F. (2019). Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviors of metakaolin-based geopolymer. Cement and Concrete Composites, 104(July 2018), 103332. https://doi.org/10.1016/j.cemconcomp.2019.05.015

Diaz, .I., Allouche, E. N., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992–996. https://doi.org/https://doi.org/10.1016/j.fuel.2009.09.012

Du, J., Bu, Y., Shen, Z., Hou, X., & Huang, C. (2016). Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature. Materials and Design, 109, 133–145. https://doi.org/10.1016/j.matdes.2016.07.003

Erfanimanesh, A., & Sharbatdar, M. K. (2020). Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate. Journal of Building Engineering, 32, 101781. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101781

Ferone, C., Roviello, G., Colangelo, F., Cioffi, R., & Tarallo, O. (2013). Novel hybrid organic-geopolymer materials. Applied Clay Science, 73(1), 42–50. https://doi.org/10.1016/j.clay.2012.11.001

Fuller, A., Maier, J., Karampinis, E., Kalivodova, J., Grammelis, P., Kakaras, E., & Scheffknecht, G. (2018). Fly Ash Formation and Characteristics from (co-)Combustion of an Herbaceous Biomass and a Greek Lignite (Low-Rank Coal) in a Pulverized Fuel Pilot-Scale Test Facility. Energies, 11(6), 1–38. https://doi.org/https://doi.org/10.3390/en11061581

Gharzouni, A., Vidal, L., Essaidi, N., Joussein, E., & Rossignol, S. (2016). Recycling of geopolymer waste: Influence on geopolymer formation and mechanical properties. Materials & Design, 94, 221–229. https://doi.org/https://doi.org/10.1016/j.matdes.2016.01.043

Gouny, F., Fouchal, F., Maillard, P., & Rossignol, S. (2012). A geopolymer mortar for wood and earth structures. Construction and Building Materials, 36, 188–195. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2012.04.009

Guo, X., Shi, H., Chen, L., & Dick, W. A. (2010). Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. Journal of Hazardous Materials, 173(1), 480–486. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.08.110

Itskos, G., Itskos, S., & Koukouzas, N. (2010). Size fraction characterization of highly-calcareous fly ash. Fuel Processing Technology, 91(11), 1558–1563. https://doi.org/https://doi.org/10.1016/j.fuproc.2010.06.002

Jose, A., Nivitha, M. R., Krishnan, J. M., & Robinson, R. G. (2020). Characterization of cement stabilized pond ash using FTIR spectroscopy. Construction and Building Materials, 263(10), 120136. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120136

Komnitsas, K., Zaharaki, D., & Perdikatsis, V. (2007). Geopolymerisation of low calcium ferronickel slags. J Mater Sci, 42, 3073–3082. https://doi.org/10.1007/s10853-006-0529-2

Kovalchuk, G., Jiménez, A. F., & Palomo, A. (2008). Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Materiales de Construcción, 58(291), 35–52. https://doi.org/https://doi.org/10.3989/mc.2008.v58.i291.101

Lahoti, M., Wong, K. K., Tan, K. H., & Yang, E.-H. (2018). Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Materials & Design, 154, 8–19. https://doi.org/https://doi.org/10.1016/j.matdes.2018.05.023

Leong, H. Y., Ong, D. E. L., Sanjayan, J. G., & Nazari, A. (2016). Suitability of Sarawak and Gladstone fly ash to produce geopolymers: A physical, chemical, mechanical, mineralogical and microstructural analysis. Ceramics International, 42(8), 9613–9620. https://doi.org/10.1016/j.ceramint.2016.03.046

Lynn, C. J., OBE, R. K. D., & Ghataora, G. S. (2016). Municipal incinerated bottom ash characteristics and potential for use as aggregate in concrete. Construction and Building Materials, 127(30), 504–517. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.09.132

Mohammed, B. S., Haruna, S., Wahab, M. M. A., Liew, M. S., & Haruna, A. (2019). Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon, 5(9), e02255. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e02255

Peyne, J., Gautron, J., Doudeau, J., Joussein, E., & Rossignol, S. (2017). Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study. Construction and Building Materials, 152(15), 794–803. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.07.047

Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S., & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials and Design, 55, 58–65. https://doi.org/10.1016/j.matdes.2013.09.049

Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532–539. https://doi.org/https://doi.org/10.1016/j.matdes.2014.03.037

Rattanasak, U., Pankhet, K., & Chindaprasirt, P. (2011). Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. International Journal of Minerals, Metallurgy, and Materials, 18(3), 364. https://doi.org/https://doi.org/10.1007/s12613-011-0448-3

Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. https://doi.org/DOI: 10.1016/j.conbuildmat.2013.05.069

Saidi, T., & Hasan, M. (2020). The effect of partial replacement of cement with diatomaceous earth (DE) on the compressive strength and absorption of mortar. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/j.jksues.2020.10.003

Sarkar, M., & Dana, K. (2021). Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, 47(3). https://doi.org/https://doi.org/10.1016/j.ceramint.2020.09.191

Sutan, N. M., Yakub, I., & Hamdan, S. (2014). Physico characterization of polymer composite cement systems. In High Performance and Optimum Design of Structures and Materials (p. 103). WITPress.

Temuujin, J., Minjigmaa, A., Davaabal, B., Bayarzul, U., Ankhtuya, A., Jadambaa, T., & MacKenzie, K. J. D. (2014). Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceramics International, 40(10), 16475–16483. https://doi.org/https://doi.org/10.1016/j.ceramint.2014.07.157

Tho-in, T., Sata, V., Chindaprasirt, P., & Jaturapitakkul, C. (2012). Pervious high-calcium fly ash geopolymer concrete. Construction and Building Materials, 30, 366–371. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2011.12.028

Troëdec, M., Peyratout, C. S., Smith, A., & Chotard, T. (2009). Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix. Journal of the European Ceramic Society, 29(10), 1861–1868. https://doi.org/https://doi.org/10.1016/j.jeurceramsoc.2008.11.016

Wattimena, O. K., Antoni, A., & Hardjito, D. (2017). A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conference Proceeding, 1887, 020041. https://doi.org/http://dx.doi.org/10.1063/1.5003524

Wilińska, I., & Pacewska, B. (2018). Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash. Journal of Thermal Analysis and Calorimetry, 133, 823–843. https://doi.org/https://doi.org/10.1007/s10973-017-6915-y

DOI: http://dx.doi.org/10.22373/ekw.v7i1.7787


  • There are currently no refbacks.

Copyright (c) 2021 Cut Rahmawati, Sri Aprilia, Taufiq Saidi, Teuku Budi Aulia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter