Effect of Time and Voltage on Pollutant Remover in Gold Treatment Wastewater With Electrocoagulation Batch Reactor

RR Dina Asrifah, Titi Tiara Anasstasia, Mia Fitri Aurilia

Abstract


Abstract: Wastewater from gold treatment by amalgamation has a high TSS value and heavy metal content in the form of Cu and Hg. This content can endanger the surrounding environment. Therefore, wastewater must be treated until it shows results below the permitted quality standards. Wastewater treatment is carried out using the batch reactor electrocoagulation method. The purpose of this study was to determine the efficiency value and optimal conditions by reducing the TSS, Cu, and Hg content in wastewater based on the effect of time (10 minutes) and voltage (4.5 volts, 6 volts, and 7.5 volts). This calculation of the efficiency and analysis showed that the optimal conditions occurred at a voltage of 6 volts from the three parameters, there are TSS = 97.49%, Cu = 95.71%, and Hg = 98.95%. Based on the test results after treatment, the wastewater still needs to be treated until it is below the safe quality standard according to Government Regulation of Indonesia Republic No. 82 of 2001 class 4.

Abstrak: Air limbah pencucian emas dengan metode amalgamasi memiliki nilai TSS yang tinggi dan kandungan logam berat berupa Cu dan Hg. Kandungan tersebut dapat membahayakan lingkungan sekitar. Oleh karena itu, air limbah harus diolah hingga menunjukkan hasil di bawah baku mutu yang diizinkan. Pengolahan air limbah dilakukan dengan metode elektrokoagulasi reaktor batch. Tujuan penelitian ini adalah untuk mengetahui nilai efisiensi dan kondisi optimal dengan mereduksi kandungan TSS, Cu, dan Hg pada limbah cair berdasarkan pengaruh waktu (10 menit) dan tegangan (4,5 volt, 6 volt, dan 7,5 volt). Hasil perhitungan efisiensi dan analisis ini menunjukkan bahwa kondisi optimal terjadi pada tegangan 6 volt dari ketiga parameter yaitu TSS = 97,49%, Cu = 95,71%, dan Hg = 98,95%. Berdasarkan hasil pengujian setelah diolah, air limbah masih perlu diolah hingga berada di bawah baku mutu aman sesuai dengan PP RI No. 82 Tahun 2001 pada kelas 4.


Keywords


electrocoagulation; gold treatment; batch; wastewater

Full Text:

PDF

References


Asrifah, RR D., (2020). TSS, Cu, and Hg Removal With Electrocoagulation Method for Gold Mine Wastewater, 2th ICEMINE, Yogyakarta, AIP Publishing. https://doi.org/10.1063/5.0010499

Asrifah, R.D., Anasstasia, T.T., Aurilia, M.F., Utama, V.F., Wulandari, D., Widhiananto, P.A., & Wibowo, B.Y. (2020). The Effect of Flow Rate Discharge on TDS, pH, TSS, and Cu in Electrocoagulation with Continuous Reactors. In Proceeding of LPPM UPN “Veteran” Yogyakarta Conference Series-Engineering and Science Series, 1(1), 737-746. https://doi.org/10.31098/ess.v1i1.171

Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37-59. https://doi.org/10.1002/cben.201600010

Babu, D.S., Anantha Singh, T. S., Nidheesh, P. V., & Suresh Kumar, M. (2020). Industrial Wastewater Treatment by Electrocoagulation Process. Separation Science and Technology, 55(17), 3195-3227. https://doi.org/10.1080/01496395.2019.1671866.

Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A.H. (2015). Heavy Metals Removal from Aqueous Environments by Electrocoagulation Process– A Systematic Review. J Environ Health Sci Engineer, 13(74). https://doi.org/10.1186/s40201-015-0233-8.

Esdaile, L. J., & Chalker, J. M. (2018). The Mercury Problem in Artisanal and Small‐Scale Gold Mining. Chemistry–A European Journal, 24(27), 6905-6916. https://doi.org/10.1002/chem.201704840.

Gilhotra, V., Das, L., Sharma, A., Kang T.S., Singh, P., Dhuria, R.S., & Bhatti, M.S. (2018). Electrocoagulation Technology for High Strength Arsenic Wastewater: Process Optimization and Mechanistic Study. Journal of Cleaner Production, 198, 693-703. https://doi.org/10.1016/j.jclepro.2018.07.023.

Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. (2017). Electrocoagulation Process in Water Treatment: A Review of Electrocoagulation Modeling Approaches. Desalination, 404, 1-21.

Hernaningsih, T. (2016). Tinjauan Teknologi Pengolahan Air Limbah Industri dengan Proses Elektrokoagulasi. Badan Pengkajian dan Penerapan Teknologi. Jurnal Rekayasa Lingkungan, 9(1), 31-36. https://doi.org/10.29122/jrl.v9i1.1988

Ingelsson, M., Yasri, N., & Roberts, E.P.L. (2020). Electrode Passivation, Faradaic Efficiency, and Performance Enhancement Strategies in Electrocoagulation—A Review. Water Research, 187. https://doi.org/10.1016/j.watres.2020.116433.

Keputusan Menteri Negara Lingkungan Hidup No. 202 Tahun 2004 tentang Baku Mutu Air Limbah bagi Usaha dan atau Kegiatan Pertambangan Bijih Emas dan atau Tembaga

Mamelkina, M. (2020). Treatment of Mining Waters by Electrocoagulation. Lappeenranta-Lahti University of Technology LUT: LUT University Press.

Mamelkina, M. A., Cotillas, S., Lacasa, E., Sáez, C., Tuunila, R., Sillanpää, M., & Rodrigo, M. A. (2017). Removal of Sulfate from Mining Waters by Electrocoagulation. Separation and Purification Technology, 182, 87-93.

Mamelkina, M. A., Tuunila, R., Sillänpää, M., & Häkkinen, A. (2019). Systematic Study on Sulfate Removal from Mining Waters by Electrocoagulation. Separation and Purification Technology, 216, 43-50.

Mollah, M., Morkovsky, P., Gomes, J., Kesmez, M., Parga, J., & Cocke, D. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1-3), 199–210. doi:10.1016/j.jhazmat.2004.08.009

Mulyani, I.M., Prayitno, M.F. and Kusumastuti, E., (2017). Pengaruh Jenis Plat Elektroda pada Proses Elektrokoagulasi untuk Menurunkan Kadar Thorium dalam Limbah Hasil Pengolahan Logam Tanah Jarang. Jurnal Pusat Sains dan Teknologi Akselerator.

Niazmand, R., Jahani, M., Sabbagh, F., & Rezania, S. (2020). Optimization of electrocoagulation conditions for the purification of table olive debittering wastewater using response surface methodology. Water (Switzerland), 12(6). https://doi.org/10.3390/W12061687

Peraturan Pemerintah Republik Indonesia No. 82 Tahun 2001 kelas 4 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air

Ribeiro, T. d. S., Grossi, C. D., Merma, A. G., dos Santos, B. F., & Torem, M. L. (2019). Removal of Boron from Mining Wastewaters by Electrocoagulation Method: Modelling Experimental Data Using Artificial Neural Networks. Minerals Engineering, 131, 8-13.

Touahria, S., Hazourli, S., Touahria, K., Eulmi, A., & Aitbara, A. (2016). Clarification of Industrial Mining Wastewater Using Electrocoagulation. International Journal of Electrochemical Science, 11(7), 5710–5723. https://doi.org/10.20964/2016.07.51

Shim, H. Y., Lee, K. S., Lee, D. S., Jeon, D. S., Park, M. S., Shin, J. S., … Chung, D. Y. (2014). Application of Electrocoagulation and Electrolysis on the Precipitation of Heavy Metals and Particulate Solids in Washwater from the Soil Washing. Journal of Agricultural Chemistry and Environment, 03(04), 130–138. https://doi.org/10.4236/jacen.2014.34015




DOI: http://dx.doi.org/10.22373/ekw.v7i1.8226

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 RR Dina Asrifah, Titi Tiara Anasstasia, Mia Fitri Aurilia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter