Development of Kinetic Models For Biogas Production From Tofu Liquid Waste
DOI:
https://doi.org/10.22373/ekw.v7i1.8296Keywords:
anaerobic digestion, biogas, tofu liquid waste, kinetic modelAbstract
Abstract: Biogas promises bioenergy to be developed as a renewable fuel to reduce the fossil energy crisis. Biogas raw material can be derived from tofu liquid waste. Biogas is processed by anaerobic digestion. This study aimed to develop a simulation of the kinetic model variations of biogas production from tofu liquid waste. The results showed that the ascending limb of the exponential equation had a greater coefficient (R2 = 1) than the ascending limb of the linear equation (R2 = 0.9574). The descending limb of the linear equation had a better coefficient (R2 = 0.9574) than the descending limb of the exponential equation (R2 = 0.95). The Gaussian model had the greatest R2 of 0.9937. Logistic growth had the greatest coefficient (R2 = 0.9951) compared to modified Gompertz (R2 = 0.9817) and exponential rise to maximum (R2 = 0.9852) in the simulation of cumulative biogas production. The fit model for kinetic biogas production from tofu liquid waste is Gaussian Model.
Abstrak: Biogas merupakan salah satu bioenergi yang menjanjikan untuk dikembangkan dalam mengurangi krisis energi fosil. Bahan baku biogas dapat berasal dari limbah cair tahu yang diolah secara anaerobic digestion. Penelitian ini bertujuan untuk mengembangkan variasi model simulasi kinetika produksi biogas dari limbah cair tahu. Hasil penelitian menunjukkan bahwa persamaan eksponensial untuk grafik kenaikan memilki koefisien yang lebih besar (R2 = 1) dibandingkan grafik kenaikan dengan persamaan linier (R2 = 0,9574). Grafik penurunan pada persamaan linier memiliki nilai koefisien lebih besar (R2 = 0,9574) dibandingkan grafik penurunan pada persamaan eksponensial (R2 = 0,95). Model Gaussian menghasilkan nilai koefisien tertinggi R2 = 0,9937. Logistic growth menghasilkan nilai R2 terbesar (0,9951) dibandingkan modified Gompertz (R2 = 0,9817) dan exponential rise to maximum (R2 = 0,9852) pada simulasi produksi biogas kumulatif. Model yang paling cocok untuk kinetika produksi biogas dari limbah cair adalah model Gaussian.
References
Ahmed, S., & Kazda, M. (2017). Characteristics of on-demand biogas production by using sugar beet silage. Anaerobe, 46, 114–121. https://doi.org/10.1016/j.anaerobe.2017.04.016
Ali, M. M., Dia, N., Bilal, B., & Ndongo, M. (2018). Theoretical models for prediction of methane production from anaerobic digestion : A critical review. International Journal of Physical Sciences, 13(13), 206–216. https://doi.org/10.5897/IJPS2018.4740
Budzianowski, W. M. (2016). A review of potential innovations for production, conditioning, and utilization of biogas with multiple-criteria assessment. Renewable and Sustainable Energy Reviews, 54, 1148–1171. https://doi.org/10.1016/j.rser.2015.10.054
Choi, Y., Ryu, J., & Lee, S. R. (2020). Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. Journal of Animal Science and Technology, 62(1), 74–83.
Dababat, S. S. B., & Shaheen, H. Q. (2019). Biogas Production Using Slaughterhouse Wastewater Co-digested with Domestic Sludge. Journal of Civil Engineering and Construction, 8(1), 34–40.
Das, A., & Mondal, C. (2015). Comparative Kinetic Study of Anaerobic Treatment of Thermally Pretreated Source-Sorted Organic Market Refuse. Journal of Engineering, 2015, 1–14.
Das, A., Mondal, C., & Roy, S. (2017). Kinetic Study of Biogas Recovery from Thermo- chemically pre-treated Rice Husk Kinetic Study of Biogas Recovery from Thermo- chemically pre-treated Rice Husk. Indian Chemical Engineer, 0(0), 1–17. https://doi.org/10.1080/00194506.2017.1374218
Ejimofor, M. I., Ezemagu, I. G., & Menkiti, M. C. (2020). Biogas production using coagulation sludge obtained from paint wastewater decontamination : Characterization and anaerobic digestion kinetics ". Current Research in Green and Sustainable Chemistry, 3(May), 100024. https://doi.org/10.1016/j.crgsc.2020.100024
Ge, X., Xu, F., & Li, Y. (2016). Solid-state anaerobic digestion of lignocellulosic biomass : Recent progress and perspectives. Bioresource Technology, 205, 239–249. https://doi.org/10.1016/j.biortech.2016.01.050
Jijai, S., & Siripatana, C. (2017). Kinetic model of biogas production from of thai rice noodle wastewater (Khanomjeen) with chicken manure. Energy Procedia, 138, 386–392. https://doi.org/10.1016/j.egypro.2017.10.177
Kafle, G. K., & Chen, L. (2016). Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential ( BMP ) using different statistical models. Waste Management, 48, 492–502. https://doi.org/10.1016/j.wasman.2015.10.021
Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2019a). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023
Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2019b). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023
Kovács Veszelovszki, P., Keszthelyi-Szabó, G., & Szendrő, P. (2018). Enhancing Biogas Production Kinetic of Meat Industrialwastewater by Microwave Pretreatment. Hungarian Agricultural Engineering, 7410(34), 44–48. https://doi.org/10.17676/hae.2018.34.44
Kumar, S., Paritosh, K., Pareek, N., Chawade, A., & Vivekanand, V. (2018). De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production : An overview. Renewable and Sustainable Energy Reviews, 90, 160–170. https://doi.org/10.1016/j.rser.2018.03.049
Li, P., Li, W., Sun, M., Xu, X., Zhang, B., & Sun, Y. (2019). Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic digestion of vegetable crop residues. Energies, 12(26), 1–14.
Liu, Y., Fang, J., Tong, X., Huan, C., Ji, G., Zeng, Y., … Yan, Z. (2019). Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures. Bioresource Technology, 293, 122066. https://doi.org/10.1016/j.biortech.2019.122066
Moujanni, A., Qarraey, I., & Ouatmane, A. (2018). Anaerobic codigestion of urban solid waste fresh leachate and domestic wastewaters: Biogas production potential and kinetic. Environmental Engineering Research, 24(1), 38–44.
Oyejide, J. O., Orhorhoro, E. K., & Atadious, D. (2018). Mathematical Modeling Of Biogas Yield From Anaerobic Co- Digestion Of Organic Waste And Pig Dung. International Journal of Engineering Science Invention, 7(5), 30–38.
Shitophyta, L.M., & Maryudi. (2018). Comparison of kinetic model for biogas production from corn cob. IOP Conference Series: Materials Science and Engineering, 345, 1–6. https://doi.org/10.1088/1757-899X/345/1/012004
Shitophyta, Lukhi Mulia. (2020). Model Kinetika Produksi Biogas dari Limbah Makanan. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 4(1), 15–18.
Shitophyta, Lukhi Mulia, Hanafi, M., & Nugroho, Y. E. (2020). Optimization of biogas from corn stover using liquid and solid-state anaerobic digestion. Jurnal Program Studi Teknik Mesin, 9(1), 1–5.
Shitophyta, Lukhi Mulia, Purwanti, S., & Maryudi. (2019). Pemanfaatan Limbah Cair Tahu menjadi Biogas di Industri Tahu Murni Pak Min Jomblangan, Banguntapan, Yogyakarta. Jurnal Pengabdian Pada Masyarakat, 4(4), 541–546. https://doi.org/10.30653/002.201944.191
Taghinazhad, J., Abdi, R., & Adl, M. (2017). Kinetic and Enhancement of Biogas Production for The Purpose of Renewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System. Int. Journal of Renewable Energy Development, 6(1), 37–44.
Ugwu, S., & Enweremadu, C. (2019). Biodegradability and kinetic studies on biomethane production from okra ( Abelmoschus esculentus ) waste. S Afr J Sci., 115(7), 1–5.
Ware, A., & Power, N. (2017). Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renewable Energy, 104, 50–59. https://doi.org/10.1016/j.renene.2016.11.045
Winquist, E., Rikkonen, P., Pyysiäinen, J., & Varho, V. (2019). Is biogas an energy or a sustainability product? - Business opportunities in the Finnish biogas branch. Journal of Cleaner Production, 233, 1344–1354. https://doi.org/10.1016/j.jclepro.2019.06.181
Yu, Q., Liu, R., Li, K., & Ma, R. (2019). A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews, 107, 51–58. https://doi.org/10.1016/j.rser.2019.02.020
Downloads
Published
Issue
Section
License
Proposed Policy for Journals That Offer Open Access Authors who publish with the Elkawnie journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).