Treatment of Well Water Using Biosorbent Derived From Areca Fiber Waste

Devie Novallyan, Wiji Utami, Risnita Risnita, Atik Sahara, Malia Sabrina

Abstract


Abstract: The biosorption of well water using biosorbent from areca fiber waste of Jambi province has been performed to elevate well water quality. In environmental preservation, this research aimed to reduce a solid waste of areca fiber waste, which has only been burned so far. This activity would increase carbon emissions in the atmosphere. These materials were obtained using carbonizations (300 and 400 oC) and without carbonization. The proper material is used as a biosorbent was 400 oC sized 200 mesh. The material showed several functional groups on the biosorbent surface, such as hydroxyl, amide, amine, and carbonyl. Interestingly, using this material, the water quality can be increased by treatments of odor, color, pH, TDS, TSS, and E. coli under conditions 1.25 g biosorbent, 50 oC, and 150 rpm for 30 minutes. The adsorption results were compared with the value from the standard of Permenkes No.146/Menkes/Per/IX/1990. Based on the explanation, it is resumed that biosorbent derived from areca fiber waste is effective, inexpensive, and easy to operate for increasing well water quality.

Abstrak: Adsorpsi air sumur menggunakan biosorbent dari limbah sabut pinang Provinsi Jambi telah dilakukan untuk meningkatkan kualitas air sumur. Pada pelestarian lingkungan, penelitian ini bertujuan untuk mengurangi limbah padat sabut pinang, yang selama ini hanya dibakar. Kegiatan ini akan meningkatkan emisi karbo ke atmosfir. Material-material ini diperoleh menggunakan karbonisasi (300 dan 400 oC) dan tanpa karbonisasi. Material yang tepat digunakan sebagai biosorben adalah 400 oC berukuran 200 mesh. Material ini memperlihatkan beberapa gugus fungsi pada permukaan biosorben, seperti hidroksil, amida, amina, dan karbonil. Menariknya, penggunaan material ini, kualitas air dapat ditingkatkan menggunakan treament aroma, warna, pH, TDS, TSS, dan E.Coli pada kondisi 1,25 gram biosorben, 50 oC, 150 rpm, dan selama 30 menit. Hasil adsorpsi dibandingkan dengan nilai standar Permenkes No.146/Menkes/Per/IX/1996. Berdasarkan penjelasan, hal ini disimpulkan bahwa biosorben dari limbah sabut pinang efektif, dan mudah untuk menggunakan untuk meningkatkan kualitas air sumur.

 


Keywords


areca fiber waste; biosorbent; well water

Full Text:

PDF

References


Abu Hasan, H., Muhammad, M. H., & Ismail, N. I. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33(May 2019), 101035. https://doi.org/10.1016/j.jwpe.2019.101035

Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112(10), 5073–5091. https://doi.org/10.1021/cr300133d

Bhattacharjee, C., Dutta, S., & Saxena, V. K. (2020). A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environmental Advances, 2(September), 100007. https://doi.org/10.1016/j.envadv.2020.100007

Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148(August 2017), 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

Chakravarty, P., Sarma, N. Sen, & Sarma, H. P. (2010a). Biosorption of cadmium(II) from aqueous solution using heartwood powder of Areca catechu. Chemical Engineering Journal, 162(3), 949–955. https://doi.org/10.1016/j.cej.2010.06.048

Chakravarty, P., Sarma, N. Sen, & Sarma, H. P. (2010b). Removal of lead(II) from aqueous solution using heartwood of Areca catechu powder. Desalination, 256(1–3), 16–21. https://doi.org/10.1016/j.desal.2010.02.029

Deliyanni, E. A., Kyzas, G. Z., Triantafyllidis, K. S., & Matis, K. A. (2015). Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 13(1), 699–708. https://doi.org/10.1515/chem-2015-0087

García, I. (2011). Removal of Natural Organic Matter to reduce the presence of Trihalomethanes in drinking water.

Gogoi, D., Bordoloi, N., Goswami, R., Narzari, R., Saikia, R., Sut, D., Gogoi, L., & Kataki, R. (2017). Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes. Bioresource Technology, 242, 36–44. https://doi.org/10.1016/j.biortech.2017.03.169

Gusril, H. (2016). Studi Kualitas Air Minum PDAM di Kota Duri Riau. Jurnal Geografi, 8(2), 190–196.

Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207, 255–266. https://doi.org/10.1016/j.chemosphere.2018.05.050

Kang, K. C., Kim, S. S., Choi, J. W., & Kwon, S. H. (2008). Sorption of Cu2+ and Cd2+ onto acid- and base-pretreated granular activated carbon and activated carbon fiber samples. Journal of Industrial and Engineering Chemistry, 14(1), 131–135. https://doi.org/10.1016/j.jiec.2007.08.007

Okolo, B. I., Oke, E. O., Agu, C. M., Nwosu-Obieogu, K., Adeyi, O., & Akatobi, K. N. (2020). Development of new biosorbent materials from agricultural waste materials for the removal of Cd(II) ions from aqueous solution through the batch adsorption process. Environmental Quality Management, Ii, 1–12. https://doi.org/10.1002/tqem.21711

Parker, J. K., McIntyre, D., & Noble, R. T. (2010). Characterizing fecal contamination in stormwater runoff in coastal North Carolina, USA. Water Research, 44(14), 4186–4194. https://doi.org/10.1016/j.watres.2010.05.018

Pongener, C., Bhomick, P., Upasana Bora, S., Goswamee, R. L., Supong, A., & Sinha, D. (2017). Sand-supported bio-adsorbent column of activated carbon for removal of coliform bacteria and Escherichia coli from water. International Journal of Environmental Science and Technology, 14(9), 1897–1904. https://doi.org/10.1007/s13762-017-1274-6

Rahman, M. Y. A., Nachabe, M. H., & Ergas, S. J. (2020). Biochar amendment of stormwater bioretention systems for nitrogen and Escherichia coli removal: Effect of hydraulic loading rates and antecedent dry periods. Bioresource Technology, 310(April), 123428. https://doi.org/10.1016/j.biortech.2020.123428

Shah, A. H., Shahid, M., Khalid, S., Natasha, Shabbir, Z., Bakhat, H. F., Murtaza, B., Farooq, A., Akram, M., Shah, G. M., Nasim, W., & Niazi, N. K. (2020). Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health, 42(1), 121–133. https://doi.org/10.1007/s10653-019-00306-6

Sia, Y. Y., Tan, I. A. W., & Abdullah, M. O. (2017). Adsorption of colour, TSS and COD from palm oil mill effluent (POME) using acid-washed coconut shell activated carbon: Kinetic and mechanism studies. MATEC Web of Conferences, 87. https://doi.org/10.1051/matecconf/20178703010

Singh, S., Parveen, N., & Gupta, H. (2018). Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environmental Technology and Innovation, 12, 189–195. https://doi.org/10.1016/j.eti.2018.09.001

Sivakumar, S., Muthirulan, P., & Meenakshi Sundaram, M. (2014). Adsorption kinetic and isotherm studies of Azure A on various activated carbons derived from agricultural wastes. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2014.10.028

Sukla Baidya, K., & Kumar, U. (2021). Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. South African Journal of Chemical Engineering, 35(July 2020), 33–43. https://doi.org/10.1016/j.sajce.2020.11.001

Tiwari, D., Lalhmunsiama, & Lee, S. M. (2015). Iron-impregnated activated carbons precursor to rice hulls and areca nut waste in the remediation of Cu(II) and Pb(II) contaminated waters: a physico-chemical studies. Desalination and Water Treatment, 53(6), 1591–1605. https://doi.org/10.1080/19443994.2013.855671

Utami, W. (2019). Potensi Arang Aktif dari Limbah Sabut Pinang (Areca catechu L) Provinsi Jambi sebagai Biosorben. Jurnal Saintek Lahan Kering, 2(1), 24–26. https://doi.org/10.32938/slk.v2i1.682

Wong, S., Ngadi, N., Inuwa, I. M., & Hassan, O. (2018). Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175, 361–375. https://doi.org/10.1016/j.jclepro.2017.12.059

Zheng, W., Li, X. ming, Wang, F., Yang, Q., Deng, P., & Zeng, G. ming. (2008). Adsorption removal of cadmium and copper from aqueous solution by areca-A food waste. Journal of Hazardous Materials, 157(2–3), 490–495. https://doi.org/10.1016/j.jhazmat.2008.01.029




DOI: http://dx.doi.org/10.22373/ekw.v7i1.8503

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Devie Novallyan, Wiji Utami, Risnita, Atik Sahara, Malia Sabrina

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter