Black Cumin (Nigella sativa) Against Mycobacterium tuberculosis Strain H37RV And MDR-TB
Abstract
Abstract: Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis. 10 million people suffer from TB Every year. Although TB is a preventable and treatable disease, 1.5 million people die every year due to TB. Alternative treatments continue to be pursued, and treatment with the latest TB drugs that are continuously being encouraged. Black cumin (Nigella sativa) seed contains essential oils with active compounds such as thymohydroquinone, Oleoresins, flavonoids, alkaloids, saponins, tannins, and terpenoids that act as antibacterial drugs. This study aims to determine the sensitivity of N. sativa seed extract in inhibiting the growth of M. tuberculosis strain H37RV and MDR-TB (Multidrug Resistance-TB). This research using Microscopic-Observation and Drug-Susceptibility Assay (MODS) method. Extraction of N. sativa was carried out by the maceration method using 70% methanol as a solvent. The results showed that the M. tuberculosis strain H37RV and MDR-TB were sensitive to N. sativa extract at concentrations of 5 and 10% but resistant to N. sativa extract at concentrations of 1 and 3%.
Abstrak: Tuberkulosis (TB) adalah penyakit menular yang disebabkan oleh Bakteri Mycobacterium tuberculosis. Penyakit ini menimbulkan dampak kematian yang cukup mengkhawatirkan. Penyakit tersebut dapat dicegah dan diobati. Salah satu sumber pengobatannya menggunakan biji jintan hitam (Nigella sativa) yang mengandung minyak atsiri dengan senyawa aktif seperti timohidrokuinon, oleoresin, flavonoid, alkaloid, saponin, tanin, dan terpenoid yang berfungsi sebagai obat antibakteri. Penelitian ini bertujuan untuk mengetahui sensitivitas ekstrak biji N. sativa dalam menghambat pertumbuhan M. tuberculosis strain H37RV and MDR-TB (Multidrug-Resistance-TB). Penelitian ini menggunakan metode Microscopic-Observation and Drug-Susceptibility Assay (MODS). Ekstraksi N. sativa dilakukan dengan metode maserasi menggunakan pelarut metanol 70%. Hasil yang diperoleh menunjukkan bahwa bakteri M. tuberculosis strain H37RV dan TB-MDR, kedua strain tsb sensitif terhadap ekstrak N. sativa konsentrasi 5 dan 10%, tetapi resisten terhadap ekstrak N. sativa konsentrasi 1 dan 3%.
Keywords
Full Text:
PDFReferences
Alcántara, R., Fuentes, P., Antiparra, R., Santos, M., Gilman, R. H., Kirwan, D. E., Zimic, M., & Sheen, P. (2019). MODS-Wayne, a colorimetric adaptation of the Microscopic-Observation Drug Susceptibility (MODS) assay for detection of mycobacterium tuberculosis pyrazinamide resistance from sputum samples. Journal of Clinical Microbiology, 57(2). https://doi.org/10.1128/JCM.01162-18
Alcántara, R., Fuentes, P., Marin, L., Kirwan, D. E., Gilman, R. H., Zimic, M., & Sheen, P. (2020). Direct determination of pyrazinamide (PZA) susceptibility by sputum microscopic observation drug susceptibility (MODS) culture at neutral pH: The MODS-PZA assay. Journal of Clinical Microbiology, 58(5). https://doi.org/10.1128/JCM.01165-19
Bakal, S. N., Bereswill, S., & Heimesaat, M. M. (2017). Finding novel antibiotic substances from medicinal plants — Antimicrobial properties of Nigella sativa directed against multidrug resistant bacteria . European Journal of Microbiology and Immunology, 7(1), 92–98. https://doi.org/10.1556/1886.2017.00001
Crawford, S. D. (2019). Lichens Used in Traditional Medicine. In Lichen Secondary Metabolites (pp. 31–97). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_2
da Silva, L. E., Confortin, C., & Swamy, M. K. (2021). Antibacterial and Antifungal Plant Metabolites from the Tropical Medicinal Plants. In Advanced Structured Materials (Vol. 140, pp. 263–285). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-54027-2_7
Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. In Infection and Drug Resistance (Vol. 12, pp. 3903–3910). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S234610
Dagne, B., Desta, K., Fekade, R., Amare, M., Tadesse, M., Diriba, G., Zerihun, B., Getu, M., Sinshaw, W., Seid, G., Gamtesa, D. F., Assefa, G., & Alemu, A. (2021). The Epidemiology of first and second-line drug-resistance Mycobacterium tuberculosis complex common species: Evidence from selected TB treatment initiating centers in Ethiopia. PLOS ONE, 16(1), e0245687. https://doi.org/10.1371/journal.pone.0245687
Dajani, E. Z., Shahwan, T. G., & Dajani, N. E. (2016). Overview of the preclinical pharmacological properties of Nigella sativa (Black seed): A complementary drug with historical and clinical significance. Journal of Physiology and Pharmacology, 67(6), 801–817.
Dhingra, S., Rahman, N. A. A., Peile, E., Rahman, M., Sartelli, M., Hassali, M. A., Islam, T., Islam, S., & Haque, M. (2020). Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Frontiers in Public Health, 8(November), 1–22. https://doi.org/10.3389/fpubh.2020.535668
Florentini, E. A., Angulo, N., Gilman, R. H., Alcántara, R., Roncal, E., Antiparra, R., Toscano, E., Vallejos, K., Kirwan, D., Zimic, M., & Sheen, P. (2020). Immunological detection of pyrazine-2-carboxylic acid for the detection of pyrazinamide resistance in Mycobacterium tuberculosis. PLOS ONE, 15(11), e0241600. https://doi.org/10.1371/journal.pone.0241600
Georgescu, M., Tăpăloagă, P. R., Tăpăloagă, D., Furnaris, F., Ginghină, O., Negrei, C., Giuglea, C., Bălălău, C., Ștefănescu, E., Popescu, I. A., & Georgescu, D. (2018). Evaluation of antimicrobial potential of nigella sativa oil in a model food matrix. Farmacia, 66(6), 1028–1036. https://doi.org/10.31925/FARMACIA.2018.6.16
Gilles, M., Zhao, J., An, M., & Agboola, S. (2010). Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry, 119(2), 731–737. https://doi.org/10.1016/j.foodchem.2009.07.021
Huang, Z., Qin, C., Du, J., Luo, Q., Wang, Y., Zhang, W., Zhang, X., Xiong, G., Chen, J., Xu, X., Li, W., & Li, J. (2015). Evaluation of the microscopic observation drug susceptibility assay for the rapid detection of MDR-TB and XDR-TB in China: a prospective multicentre study. Journal of Antimicrobial Chemotherapy, 70(2), 456–462. https://doi.org/10.1093/jac/dku384
Hussain, D. A., & Hussain, M. M. (2016). Nigella sativa (black seed) is an effective herbal remedy for every disease except death – a Prophetic statement which modern scientists confirm unanimously: A review. Landline, 8801912(April), 8802–8903.
Jaiswal, Y. S., & Williams, L. L. (2017). A glimpse of Ayurveda – The forgotten history and principles of Indian traditional medicine. In Journal of Traditional and Complementary Medicine (Vol. 7, Issue 1, pp. 50–53). National Taiwan University. https://doi.org/10.1016/j.jtcme.2016.02.002
Khan, M. A. (1999). Chemical composition and medicinal properties of Nigella sativa Linn. In Inflammopharmacology (Vol. 7, Issue 1, pp. 15–35). VSP BV. https://doi.org/10.1007/s10787-999-0023-y
Kirwan, D. E., Ugarte-Gil, C., Gilman, R. H., Rizvi, H., Ticona, E., Chavez, G., Cabrera, J. L., Matos, E. D., Evans, C. A., Moore, D. A. J., & Friedland, J. S. (2016). Microscopic observation drug susceptibility assay for rapid diagnosis of lymph node tuberculosis and detection of drug resistance. Journal of Clinical Microbiology, 54(1), 185–189. https://doi.org/10.1128/JCM.02227-15
Kul’Ko, A. B., Kisil, O. V., Sadykova, V. S., Mikhailov, V. F., Vasilieva, I. M., Shulenina, L. V., Zasukhina, G. D., & Rogozhin, E. A. (2016). Investigation of thionins from black cumin (Nigella sativa L.) seed showing cytotoxic, regulatory and antifungal activity. Antibiotiki i Khimioterapiya, 61(9–10), 8–16. https://europepmc.org/article/med/29539245
Kulyar, M. F. e. A., Li, R., Mehmood, K., Waqas, M., Li, K., & Li, J. (2020). Potential influence of Nigella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. In Phytomedicine (p. 153277). Elsevier GmbH. https://doi.org/10.1016/j.phymed.2020.153277
Liu, Q., Yang, D., Qiu, B., Martinez, L., Ji, Y., Song, H., Li, Z., & Wang, J. (2021). Drug resistance gene mutations and treatment outcomes in MDR-TB: A prospective study in Eastern China. PLOS Neglected Tropical Diseases, 15(1), e0009068. https://doi.org/10.1371/journal.pntd.0009068
Maideen, N. M. P. (2020). Prophetic Medicine-Nigella Sativa (Black Cumin Seed) – Potential Herb for COVID-19? In Journal of Pharmacopuncture (Vol. 23, Issue 2, pp. 62–70). Korean Pharmacopuncture Institute. https://doi.org/10.3831/KPI.2020.23.010
Majeed, A., Muhammad, Z., Ahmad, H., Rehmanullah, Hayat, S. S. S., Inayat, N., & Siyyar, S. (2020). Nigella sativa L.: Uses in traditional and contemporary medicines – An overview. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2020.02.001
Mani, J. S., Johnson, J. B., Hosking, H., Ashwath, N., Walsh, K. B., Neilsen, P. M., Broszczak, D. A., & Naiker, M. (2021). Antioxidative and therapeutic potential of selected Australian plants: A review. In Journal of Ethnopharmacology (Vol. 268, p. 113580). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2020.113580
McGaw, L. J., Jäger, A. K., & Van Staden, J. (2002). Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia, 73(5), 431–433. https://doi.org/10.1016/S0367-326X(02)00120-X
Minh Ha, D. T., Ngoc Lan, N. T., Wolbers, M., Kiet, V. S., Thanh Hang, H. T., Duc, N. H., Huong, T. M., Bach, V. M., Phuong Thao, N. T., Quyet, T. V., Bich Tuyen, N. T., Ha, V. T., Nho, N. T., Hoa, D. V., Hoang Anh, P. T., Dung, N. H., Farrar, J., & Caws, M. (2012). Evaluation of microscopic observation drug susceptibility assay for diagnosis of multidrug-resistant Tuberculosis in Viet Nam. BMC Infectious Diseases, 12(1), 1–11. https://doi.org/10.1186/1471-2334-12-49
Mollazadeh, H., Afshari, A. R., & Hosseinzadeh, H. (2017). Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: Involvement of apoptosis: - Black cumin and cancer -. In Journal of Pharmacopuncture (Vol. 20, Issue 3, pp. 158–172). Korean Pharmacopuncture Institute. https://doi.org/10.3831/KPI.2017.20.019
Okethwangu, D., Birungi, D., Biribawa, C., Kwesiga, B., Turyahabwe, S., Ario, A. R., & Zhu, B. P. (2019). Multidrug-resistant tuberculosis outbreak associated with poor treatment adherence and delayed treatment: Arua District, Uganda, 2013-2017. BMC Infectious Diseases, 19(1), 1–10. https://doi.org/10.1186/s12879-019-4014-3
Owusu, E., & Newman, M. J. (2020). Microscopic Observation Drug Susceptibility (MODS) Assay: A Convenient Method for Determining Antibiogram of Clinical Isolates of Mycobacterium tuberculosis in Ghana. Medical Sciences, 8(1), 5. https://doi.org/10.3390/medsci8010005
Rattanachaikunsopon, P., & Phumkhachorn, P. (2010). Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. Journal of Bioscience and Bioengineering, 110(5), 614–619. https://doi.org/10.1016/j.jbiosc.2010.06.010
Redvers, N., & Blondin, B. (2020). Traditional Indigenous medicine in North America: A scoping review. PLOS ONE, 15(8), e0237531. https://doi.org/10.1371/journal.pone.0237531
Shabnam Javed. (2012). Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). Journal of Medicinal Plants Research, 6(5). https://doi.org/10.5897/jmpr11.1341
Singh, S., Das, S. S., Singh, G., Schuff, C., De Lampasona, M. P., & Catalán, C. A. N. (2014). Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seed (Nigella sativa L.). BioMed Research International, 2014. https://doi.org/10.1155/2014/918209
Srinivasan, K. (2018). Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seed: traditional uses, chemical constituents, and nutraceutical effects. Food Quality and Safety, 2(1), 1–16. https://doi.org/10.1093/fqsafe/fyx031
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. In Microbial Pathogenesis (Vol. 134, p. 103580). Academic Press. https://doi.org/10.1016/j.micpath.2019.103580
Tiberi, S., du Plessis, N., Walzl, G., Vjecha, M. J., Rao, M., Ntoumi, F., Mfinanga, S., Kapata, N., Mwaba, P., McHugh, T. D., Ippolito, G., Migliori, G. B., Maeurer, M. J., & Zumla, A. (2018). Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. In The Lancet Infectious Diseases (Vol. 18, Issue 7, pp. e183–e198). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(18)30110-5
Toma, C. C., Olah, N. K., Vlase, L., Mogoşan, C., & Mocan, A. (2015). Comparative studies on polyphenolic composition, antioxidant and diuretic effects of nigella sativa L. (black cumin) and Nigella damascena L. (Lady-in-a-Mist) seed. Molecules, 20(6), 9560–9574. https://doi.org/10.3390/molecules20069560
Ugur, A. R., Dagi, H. T., Ozturk, B., Tekin, G., & Findik, D. (2016). Assessment of in vitro antibacterial activity and cytotoxicity effect of Nigella sativa oil. Pharmacognosy Magazine, 12(47), S471–S474. https://doi.org/10.4103/0973-1296.191459
Vasava, M. S., Nair, S. G., Rathwa, S. K., Patel, D. B., & Patel, H. D. (2019). Development of new drug-regimens against multidrug-resistant tuberculosis. In Indian Journal of Tuberculosis (Vol. 66, Issue 1, pp. 12–19). Tuberculosis Association of India. https://doi.org/10.1016/j.ijtb.2018.07.004
Vijayakumar, S., Divya, M., Vaseeharan, B., Chen, J., Biruntha, M., Silva, L. P., Durán-Lara, E. F., Shreema, K., Ranjan, S., & Dasgupta, N. (2021). Biological Compound Capping of Silver Nanoparticle with the Seed Extracts of Black cumin (Nigella sativa): A Potential Antibacterial, Antidiabetic, Anti-inflammatory, and Antioxidant. Journal of Inorganic and Organometallic Polymers and Materials, 31(2), 624–635. https://doi.org/10.1007/s10904-020-01713-4
Wikman-Jorgensen, P., Llenas-García, J., Hobbins, M., Ehmer, J., Abellana, R., Goncalves, A. Q., Pérez-Porcuna, T. M., & Ascaso, C. (2014). Microscopic observation drug susceptibility assay for the diagnosis of TB and MDR-TB in HIV-infected patients: A systematic review and meta-analysis. European Respiratory Journal, 44(4), 973–984. https://doi.org/10.1183/09031936.00079614
Zadbuke, S. S., Set, R., Khan, N., & Shastri, J. (2017). Concurrent evaluation of microscopic observation of drug susceptibility assay for pulmonary and extrapulmonary tuberculosis. Journal of Laboratory Physicians, 9(02), 089–094. https://doi.org/10.4103/0974-2727.199626
DOI: http://dx.doi.org/10.22373/ekw.v7i1.9335
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Mashuri Masri, Cut Muthiadin, Masita Masita, Tri Cahyanto, Lianah Lianah, Rusny Rusny, Siska Tridesianti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
P-ISSN : 2460-8912
E-ISSN : 2460-8920
ELKAWNIE
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.
View full page view stats report click here