Tracking The Source of Antimicrobial Production From House Fly (Musca domestica): Right-Wing of Fly Or Gut System? - A Mini-Review
Abstract
Abstract: The house fly (Musca domestica) is a vector of disease-causing bacteria because of its habit of perching and feeding on various substrates of pathogenic bacteria. His role as a disease carrier contradicts the hadith narrated by Bukhari, which is "If a fly falls into your vessel, drown it and then remove it because one of its wings carries disease and the other is the cure". This hadith indicates the presence of antimicrobial compounds produced from the body of flies. Various research reports show that the truth of this hadith is that there are antimicrobial-producing bacterial symbionts on the wings of flies (left and right) that can kill pathogenic bacteria on one of the wings or both. Antimicrobial compounds are also produced naturally in the digestive tract of flies from the larval stage to adulthood as a response to the body's defense against the presence of pathogenic bacteria in their bodies. The antimicrobial compounds are lysozyme, defensin, cecropin, diptericin, and several antimicrobial peptide compounds. This compound can also be removed mechanically through pressure (the process of immersing the fly's body in water). This shows that the process of drowning aims to extract or release antimicrobial compounds from the digestive tract of flies to neutralize pathogenic bacteria that have mixed in the liquid in specific containers. This review aims to examine various reports related to antimicrobial substances produced in flies and their evidence in this hadith.
Abstrak: Lalat rumah (Musca domestica) merupakan vektor pembawa bakteri penyebab penyakit karena kebiasaan hinggap dan makan pada berbagai substrat bakteri patogen. Perannya sebagai pembawa penyakit memiliki kontradiksi dengan hadist yang diriwayatkan oleh Bukhari yaitu “Jika seekor lalat jatuh ke bejana kamu, tenggelamkanlah kemudian singkirkan, karena salah satu sayapnya membawa penyakit dan sayap lainnya adalah obatnya”. Hadist ini mengindikasikan adanya senyawa antimikroba yang dihasilkan dari tubuh lalat. Berbagai laporan penelitian menunjukkan bahwa kebenaran hadist ini yaitu pada sayap lalat (kiri dan kanan) terdapat bakteri simbion penghasil antimikrob yang mampu membunuh bakteri patogen pada salah satu sayap atau keduanya. Senyawa antimikrob juga dihasilkan secara alami dalam pencernaan lalat sejak tahap larva hingga dewasa sebagai respon pertahanan tubuh terhadap keberadaan bakteri patogen ditubuhnya. Senyawa antimikrob tersebut berupa lisozim, defensin, cecrofin, diptericin dan beberapa senyawa peptida antimikrob. Senyawa ini juga dapat dikeluarkan secara mekanik melalui tekanan (proses penenggelaman tubuh lalat dalam air). Hal ini menunjukkan bahwa proses penenggelaman lalat kedalam air bertujuan untuk mengekstrak atau mengeluarkan senyawa antimikrob dari pencernaan lalat untuk menetralisir bakteri patogen yang telah bercampur dalam cairan di wadah tertentu. Review ini bertujuan untuk mengkaji berbagai laporan terkait senyawa antimikrob yang dihasilkan pada tubuh lalat dan pembuktiannya pada hadist tersebut.
Keywords
Full Text:
PDFReferences
Akhtar, M., Hirt, H., & Zurek, L. (2009). Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microbial Ecology, 58(3), 509–518. https://doi.org/10.1007/s00248-009-9533-9
Al-Bukhory, S. (2007). Sahih Bukhari, Book 71: Medicine. https://www.iium.edu.my/deed/hadith/bukhari/071_sbt.html
Ali, S. M., Siddiqui, R., Khan, N. A., Naveed, C., & Khan, A. (2018). Antimicrobial discovery from natural and unusual sources. Journal of Pharmacy and Pharmacology, 70(2018), 1287–1300. https://doi.org/10.1111/jphp.12976
Arora, S., Baptista, C., & Lim, C. S. (2011). Maggot metabolites and their combinatory effects with antibiotic on Staphylococcus aureus. Annals of Clinical Microbiology and Antimicrobials, 10(6), 1–8. https://doi.org/10.1186/1476-0711-10-6
Atta, R. M. (2014). Microbiological Studies on Fly Wings (Musca domestica) Where Disease and Treat. World Journal of Medical Sciences, 11(4), 486–489. https://doi.org/10.5829/idosi.wjms.2014.11.4.86131
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology, 10(302), 1–19. https://doi.org/10.3389/fmicb.2019.00302
Chalk, R., Townson, H., Natori, S., Desmond, H., & Ham, P. J. (1994). Purification of an insect defensin from the mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 24(4), 403–410. https://doi.org/10.1016/0965-1748(94)90033-7
Chen, H. C., Brown, J. H., Morell, J. L., & Huang, C. M. (1988). Synthetic magainin analogues with improved antimicrobial activity. FEBS Letters, 236(2), 462–466. https://doi.org/10.1016/0014-5793(88)80077-2
Claresta, I., Desita Sari, D., Nurohmi, S., & Yuni Damayanti, A. (2020). The right-wing of fly (Musca domestica) as a neutralization of drinks contaminated by microbe. Journal of Nutritional Science and Vitaminology, 66(1), 283–285. http://dear.
Clarke, J., Gillings, M., & Beattie, A. (2002). Hypothesis driven drug discovery. Microbiology Australia, 8–10. www.who.int/whr/1996/exsume.htm
Davies, M. P., Anderson, M., & Hilton, A. C. (2016). The housefly Musca domestica as a mechanical vector of Clostridium difficile. Journal of Hospital Infection, 94(3), 263–267. https://doi.org/10.1016/j.jhin.2016.08.023
de Jonge, N., Michaelsen, T. Y., Ejbye-Ernst, R., Jensen, A., Nielsen, M. E., Bahrndorff, S., & Nielsen, J. L. (2020). Housefly (Musca domestica L.) associated microbiota across different life stages. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-64704-y
DeFilippi, S., Groulx, E., Megalla, M., Mohamed, R., & Avis, T. J. (2018). Fungal competitors affect production of antimicrobial lipopeptides in Bacillus subtilis strain B9–5. Journal of Chemical Ecology, 44(4), 374–383. https://doi.org/10.1007/s10886-018-0938-0
Farag, M. M. S., Moghannem, S. A. M., Shehabeldine, A. M., & Azab, M. S. (2020). Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microbial Pathogenesis, 140(2020), 1–10. https://doi.org/10.1016/j.micpath.2019.103947
Fu, P., Wu, J., & Guo, G. (2009). Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly). Cellular & Molecular Immunology, 6(4), 245–251.
Galal, F. H., Elshammari, T., & Seufi, A. M. (2019). Isolation, characterization and antagonistic activity of the external microflora of the house fly, Musca domestica (Diptera: Muscidae). Journal of Pure Applied Microbiology, 13(3), 1619–1628. https://doi.org/10.22207/JPAM.13.3.35
Gill, C., Bahrndorff, S., & Lowenberger, C. (2017). Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies. Insect Science, 24(4), 584–598. https://doi.org/10.1111/1744-7917.12353
Gillespie, J. P., Kanost, M. R., & Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643. https://doi.org/10.1146/annurev.ento.42.1.611
Harrison, J., Frazier, M. R., Henry, J. R., Kaiser, A., Klok, C. J., & Rascón, B. (2006). Responses of terrestrial insects to hypoxia or hyperoxia. Respiratory Physiology and Neurobiology, 154(1–2), 4–17. https://doi.org/10.1016/j.resp.2006.02.008
Hegedus, D., Erlandson, M., Gillott, C., & Toprak, U. (2009). New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology, 54(1), 285–302. https://doi.org/10.1146/annurev.ento.54.110807.090559
Hoffmann, J. A., Reichhart, J. M., & Hetru, C. (1996). Innate immunity in higher insects. Current Opinion in Immunology, 8(1), 8–13. https://doi.org/10.1016/S0952-7915(96)80098-7
Hou, L., Shi, Y., Zhai, P., & Le, G. (2007). Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). Journal of Ethnopharmacology, 111(2), 227–231. https://doi.org/10.1016/j.jep.2006.11.015
Jacques, B. J., Bourret, T. J., & Shaffer, J. J. (2017). Role of fly cleaning behavior on carriage of Escherichia coli and Pseudomonas aeruginosa. Journal of Medical Entomology, 54(6), 1712–1717. https://doi.org/10.1093/jme/tjx124
Joyner, C., Mills, M. K., & Nayduch, D. (2013). Pseudomonas aeruginosa in Musca domestica L.: temporospatial examination of bacteria population dynamics and house fly antimicrobial responses. PLoS ONE, 8(11), 1–9. https://doi.org/10.1371/journal.pone.0079224
Kanan, M., Salaki, C., & Semuel Mokosuli, Y. (2020). Molecular identification of bacterial species from Musca domestica L. and Chrysomya megachepala L. Central Sulawesi, Indonesia. J Pure Appl Microbiol, 14(2), 1595–1607. https://doi.org/10.22207/JPAM.14.2.58
Lehane, M. J. (1997). Peritrophic matrix structure and function. Annual Review of Entomology, 42(1), 525–550. https://doi.org/10.1146/annurev.ento.42.1.525
Lu, J., Wang, J. H., Zhong, Y., Zhao, Y. Y., & Chen, Z. W. (2006). Purification and characterization of weak-acid antibacterial peptide MD7095 from Musca domestica larvae. Wei Sheng Wu Xue Bao Acta Microbiologica Sinica, 46(3), 406–411. https://europepmc.org/article/MED/16933610
Lu, X., Shen, J., Jin, X., Ma, Y., Huang, Y., Mei, H., Chu, F., & Zhu, J. (2012). Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli. Applied Microbiology and Biotechnology, 95(4), 939–945. https://doi.org/10.1007/s00253-011-3793-2
M. Al-Taee, K., & Gh. Alsammak, E. (2011). Isolation and identification of bacterial species from house fly Musca domestica wings. Rafidain Journal of Science, 22(6), 11–21. https://doi.org/10.33899/rjs.2011.6514
Maiti, P. K., Das, S., Sahoo, P., & Mandal, S. (2020). Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-66984-w
Meylaers, K., Clynen, E., Daloze, D., DeLoof, A., & Schoofs, L. (2004). Identification of 1-lysophosphatidylethanolamine (C16:1) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochemistry and Molecular Biology, 34(1), 43–49. https://doi.org/10.1016/j.ibmb.2003.09.001
Moore, T., Globa, L., Barbaree, J., Vodyanoy, V., & Sorokulova, I. (2013). Antagonistic activity of Bacillus bacteria against food-borne pathogens. Journal of Probiotics & Health, 1(3), 1–6. https://doi.org/10.4172/2329-8901.1000110
Mumcuoglu, K. Y., Miller, J., Mumcuoglu, M., Friger, M., & Tarshis, M. (2001). Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). Journal of Medical Entomology, 38(2), 161–166. https://doi.org/10.1603/0022-2585-38.2.161
Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., & Ghobadi, Z. (2010). Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chemical Engineering Journal, 163(3), 188–194. https://doi.org/10.1016/j.cej.2010.06.044
Nayduch, D., & Joyner, C. (2013). Expression of lysozyme in the life history of the house fly (musca domestica L.). Journal of Medical Entomology, 50(4), 847–852. https://doi.org/10.1603/ME12167
Nazari, M., Mahrabi, T., Hosseini, S. M., & Alikhani, M. Y. (2017). Bacterial contamination of adult house flies (Musca domestica) and sensitivity of these bacteria to various antibiotics, captured from Hamadan City, Iran. Journal of Clinical and Diagnostic Research, 11(4), DC04–DC07. https://doi.org/10.7860/JCDR/2017/23939.9720
Nazni, W., Seleena, B., Lee, H., Jeffery, J., Rogayah, T., & Sofian, M. (2005). Bacteria fauna from the house fly, Musca domestica (L.). Tropical Biomedicine, 22(2), 225–231.
Nostro, A., Germanò, M. P., D’Angelo, V., Marino, A., & Cannatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology, 30(5), 379–384. https://doi.org/10.1046/j.1472-765x.2000.00731.x
Park, J. W., Kim, C. H., Kim, J. H., Je, B. R., Roh, K. B., Kim, S. J., Lee, H. H., Ryu, J. H., Lim, J. H., Oh, B. H., Lee, W. J., Ha, N. C., & Lee, B. L. (2007). Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6602–6607. https://doi.org/10.1073/pnas.0610924104
Pei, Z., Sun, X., Tang, Y., Wang, K., Gao, Y., & Ma, H. (2014). Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva. Gene, 549(1), 41–45. https://doi.org/10.1016/j.gene.2014.07.028
Petridis, M., Bagdasarian, M., Waldor, M. K., & Walker, E. (2006). Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. Journal of Medical Entomology, 43(2), 288–295. https://doi.org/10.1603/0022-2585(2006)043[0288:HTOSTA]2.0.CO;2
Phillips, D. C. (1967). The hen egg-white lysozyme molecule. Proceedings of the National Academy of Sciences, 57(3), 483–495. https://doi.org/10.1073/pnas.57.3.483
Richards, A. G., & Richards, P. A. (1977). The peritrophic membranes of insects. Annual Review of Entomology, 22(1), 219–240. https://doi.org/10.1146/annurev.en.22.010177.001251
Storey, K. B., & Storey, J. M. (1990). Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Quarterly Review of Biology, 65(2), 145–174. https://doi.org/10.1086/416717
Wang, Y., Cheng, J., Luo, M., Wu, J., & Guo, G. (2020). Identifying and characterizing a novel peritrophic matrix protein ( Md PM-17) associated with antibacterial response from the Housefly, Musca domestica (Diptera: Muscidae). Journal of Insect Science, 20(6), 1–7. https://doi.org/10.1093/jisesa/ieaa135
Wei, T., Hu, J., Miyanaga, K., & Tanji, Y. (2013). Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica). Applied Microbiology and Biotechnology, 97(4), 1775–1783. https://doi.org/10.1007/s00253-012-4024-1
Woods, H. A., & Lane, S. J. (2016). Metabolic recovery from drowning by insect pupae. Journal of Experimental Biology, 219, 3126–3136. https://doi.org/10.1242/jeb.144105
Yalli, A., Sambo, S., Lawal, H., & Tukur, U. (2017). Study of bacteria on the body surfaces of house flies (Musca Domestica) in some homes within Sokoto Metropolis. Journal of Advancement in Medical and Life Sciences, 5(4), 1–5. http://scienceq.org/Journals/JALS.php
Yap, K. L., Kalpana, M., & Lee, H. L. (2008). Wings of the common house fly (Musca domestica L.): importance in mechanical transmission of Vibrio cholerae. Tropical Biomedicine, 25(1), 1–8.
DOI: http://dx.doi.org/10.22373/ekw.v7i2.9495
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Muhammad Asril, Ika Agus Rini, Indah Oktaviani, Mushaliyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
P-ISSN : 2460-8912
E-ISSN : 2460-8920
ELKAWNIE
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.
View full page view stats report click here