The Application of Goat Bone Waste Activated Charcoal As Manganese Heavy Metal Absorbent in Borehole Water
DOI:
https://doi.org/10.22373/ekw.v7i2.9586Keywords:
goat bone activated charcoal, manganese heavy metals, borehole waterAbstract
Abstract: Bone is a waste from livestock that contains both organic and inorganic components. It consists of 69% organic compounds used as raw materials for activated charcoal manufacturing. The research aimed to process goat bone waste into activated charcoal products to absorb manganese-heavy metals in borehole water. This research was conducted through carbonization, activation, and characterization. The goat bone waste was carbonized and heated at 700oC for 1 hour, followed by activation. The absorption of manganese-heavy metal was determined by variating the weight of goat bone activated charcoal in 5 g, 10 g, 15 g with a contact time of 15 and 30 minutes. The goat bone waste charcoal obtained was characterized by proximate test, Fourier Transform Infrared Spectroscopy (FT-IR), and Scanning Electron Microscopy (SEM). The results showed that goat bone activated charcoal has a water content value of 2%, ash content of 7%, volatile matter of 10%, fixed carbon 87%, and iodine absorption of 968 mg/g. These values still meet the requirement specified in SNI 06-3730-1995 and SNI 06-4253-1996. The Fourier Transform Infrared Spectroscopy (FTIR) analysis produced functions groups of C–H, C=C, C=H, CºC, N-H dan O–H. The Scanning Electron Microscopy (SEM) test results found an active charcoal pore diameter of 5,200 mm x 12,952 mm. The efficiency of manganese heavy metals absorption in borehole water ranges from 99.707% - 99.821%.
Abstrak: Tulang merupakan limbah hasil peternakan yang pemanfaatannya belum maksimal. Tulang tersusun dari senyawa organik sebesar 69% yang dapat dijadikan bahan baku pembuatan arang aktif. Penelitian bertujuan mengolah limbah tulang kambing menjadi produk arang aktif yang mampu menyerap logam berat mangan pada air sumur bor. Metode penelitian meliputi tahap karbonisasi tulang, tahap aktivasi arang pada suhu 700 oC selama 1 jam, tahap penyerapan logam berat mangan mengunakan variasi berat arang aktif tulang kambing 5 g, 10 g, 15 g dengan waktu kontak 15 dan 30 menit dan tahap analisis meliputi uji proksimat, uji gugus fungsi dan uji morfologi. Hasil uji proksimat menunjukkan nilai kadar air 2%, kadar abu 7%, volatile matter 10%, fixed karbon 87 %, daya serap yodium 968 mg/g masih memenuhi SNI 06-3730- 1995 dan SNI 06-4253-1996. Uji FTIR menghasilkan gugus fungsi C–H, C=C, C=H, CºC, N-H dan O–H. Pengujian SEM menghasilkan diameter pori arang aktif sebesar 5,200 mm x 12,952 mm. Efesiensi penyerapan logam berat mangan pada air sumur bor berkisar pada 99,707% - 99,821%.
References
Adikusuma, W., Windusara, S., Negara, P., & Astawa, K. (2018). Pengaruh Variasi Suhu Karbonisasi Terhadap Karakteristik Karbon Aktif Dari Bambu Swat (Gigantocholoa verticillata). Ilmiah Teknik Desain Mekanika, 7(4), 347–352. https://ocs.unud.ac.id/index.php/mekanika/article/download/44053/26758/
Agustin, D. A. S. H. (2020). Pengaruh Temperatur Karbonisasi Terhadap Karakteristik Arang Aktif Dari Tempurung Kluwak (Pangium Edule). Prosiding 4th Seminar Nasional Penelitian & Pengabdian Kepada Masyarakat 2020, 60. http://jurnal.poliupg.ac.id/index.php/snp2m/article/download/2460/2172
Antika, R., Siregar, D. S., & Pane, Y. P. (2019). Efektivitas Karbon Aktif Tongkol Jagung dalam Menurunkan Kadar Besi (Fe) dan Mangan (Mn) pada Air Sumur Gali di Desa Amplas Kecamatan Percut Sei Tuan Kabupaten Deli Serdang. Kesehatan Global, 2(2), 81–92. https://doi.org/10.33085/jkg.v2i2.4263
Arsad, E., & Hamdi, S. (2010). Teknologi Pengolahan Dan Pemanfaatan Karbon Aktif Untuk Industri. Riset Industri Hasil Hutan, 2(2), 43–51. https://doi.org/10.24111/jrihh.v2i2.1146
Azmi, U., Hanifah, T. A., & Anita, S. (2015). Potensi Arang Aktif Dari Tulang Kambing Sebagai Adsorben Ion Tembaga, Timbal, Nitrat Dan Sianida Dalam Larutan. JOM FMIPA, 2(1), 152–162. https://www.neliti.com/publications/183833/potensi-arang-aktif-dari-tulang-kambing-sebagai-adsorben-ion-tembaga-timbal-nitr
Badan Pusat Statistik. (2020). Populasi Kambing menurut Provinsi (Ekor), 2018-2020. Populasi Kambing Menurut Provinsi. https://www.bps.go.id/indicator/24/472/1/populasi-kambing-menurut-provinsi.html
Budi, E., Nasbey, H., Budi, S., Handoko, E., Suharmanto, P., Sinansari, R., & Sunaryo. (2012). Kajian Pembentukan Karbon Aktif Berbahan Arang Tempurung Kelapa. Seminar Nasional Fisika 2012, 62–66. http://journal.unj.ac.id/unj/index.php/prosidingsnf/article/view/6154
Euw, S. Von, Wang, Y., Laurent, G., & Reports, C. D. (2019). Bone mineral: new insights into its chemical composition. In nature.com (Vol. 9, Issue 8456). https://www.nature.com/articles/s41598-019-44620-6
Fitryani, R., Bali, S., & Itnawita. (2014). Kemampuan Serapan Abu Tulang Kambing terhadap Variasi Konsentrasi Ion Sulfat. https://www.neliti.com/publications/188679/kemampuan-serapan-abu-tulang-kambing-terhadap-variasi-konsentrasi-ion-sulfat
Imammuddin, M., Soeparman, S., Suprapto, W., & As’ad Sonief, A. (2018). Pengaruh Temperatur Karbonisasi Terhadap Mikrostruktur Dan Pembentukan Kristal Pada Biokarbon Eceng Gondok Sebagai Bahan Dasar Absorber Gelombang Elektromagnetik Radar. Rekayasa Mesin, 9(2), 135–141. https://rekayasamesin.ub.ac.id/index.php/rm/article/view/446
Jamilatun, S., & Setyawan, M. (2014). Pembuatan Arang Aktif dari Tempurung Kelapa dan Aplikasinya untuk Penjernihan Asap Cair. Spektrum Industri, 12(1), 1–112. http://wartawarga.gunadarma.ac.id/2009/12/tugas-iad-3-tekhnologi-energi
Larasati, A. I., Susanawati, L. D., & Suharto, B. (2015). Efektivitas adsorpsi logam berat pada air lindi menggunakan media karbon aktif, zeolit, dan silika gel di TPA Tlekung, Batu. Sumberdaya Alam Dan Lingkungan, 2(1), 44–48. https://jsal.ub.ac.id/index.php/jsal/article/view/163
Lempang, M. (2014). Pembuatan dan kegunaan arang aktif. Info Teknis EBONI, 11(2), 65–80. http://ejournal.forda-mof.org/ejournal-litbang/index.php/buleboni/article/view/5041
Meisrilestari, Y., Khomaini, R., & Wijayanti, H. (2013). Pembuatan Arang Aktif Dari Cangkang Kelapa Sawit Dengan Aktivasi Secara Fisika, Kimia Dan Fisika-Kimia. Konversi, 2(1), 45–50. http://konversi.ulm.ac.id/index.php/konversi/article/view/21
Mohammed, A., Aboje, A. A., Auta, M., & Jibril, M. (2012). A Comparative Analysis and Characterization of Animal Bones as Adsorbent. Advances in Applied Science Research, 3(2), 3089–3096. www.pelagiaresearchlibrary.com
Prasetyo, Y., Harun, D., Jurusan, N., Fmipa, K., Matematika, F., Ilmu, D., & Alam, P. (2013). Penentuan Konsentrasi ZnCl2 Pada Proses Pembuatan Karbon Aktif Tongkol Jagung Dan Penurunan Konsentrasi Surfaktan Linier Alkyl Benzene Sulphonate (LAS). UNESA Journal of Chemistry, 2(3), 231–235. https://jurnalmahasiswa.unesa.ac.id/index.php/unesa-journal-of-chemistry/article/view/4506
Sembiring, M., & Sinaga, T. (2003). Arang Aktif. https://www.academia.edu/download/31831283/industri-meilita.pdf
Setiawan, A. A., Shofiyani, A., & Intan, S. (2017). Pemanfaatan Limbah Daun Nanas (Ananas Comosus) Sebagai Bahan Dasar Arang Aktif Untuk Adsorpsi Fe(II). Kimia Khatulistiwa, 6(3), 66–74. https://jurnal.untan.ac.id/index.php/jkkmipa/article/view/22339
Trisetyani, I., & Sutrisno, J. (2014). Penurunan Kadar Fe Dan Mn Pada Air Sumur Gali Dengan Aerasi Gelembung Udara Di Desa Siding Kecamatan Bancar Kabupaten Tuban. Jurnal Teknik Waktu, 12(1), 1412–1867. http://jurnal.unipasby.ac.id/index.php/waktu/article/download/822/669
Viena, V., Bahagia, B., & Afrizal, Z. (2020). Produksi Karbon Aktif dari Cangkang Sawit dan Aplikasinya Pada Penyerapan Zat Besi, Mangan Dan ph Air Sumur. Jurnal Serambi Engineering, V(1), 875–882. http://ojs.serambimekkah.ac.id/jse/article/view/875 - 882
Waluyo, C. A., Mongan, S., & Tumimomor, F. (2020). Pengaruh Waktu Aktivasi Kimia Pada Karbon Aktif Berbahan Dasar Arang Rotan Serta Karakterisasi Menggunakan SEM Dan FTIR. Pendidikan Fisika Charms Sains, 1(3), 113–118. http://eurekaunima.com/index.php/jpfunima/article/download/47/20
Wardani, S., & Mirdayanti, R. (2019). Optimasi Suhu Aktivasi Proses Pembuatan Arang Aktif Limbah Tulang Kambing. Serambi Engineering, 4(2), 498–505. https://doi.org/10.32672/jse.v4i2.1327
Wardani, S., & Rosa, E. (2018). Potensi Limbah Tulang Kambing Sebagai Arang Aktif Yang Teraktivasi Asam Sulfat. Serambi Engineering, 3(2), 308–315. https://doi.org/10.32672/jse.v3i2.714
WHO. (2004). Manganese in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. https://apps.who.int/iris/bitstream/handle/10665/75376/WHO_SDE_WSH_03.04_104_eng.pdf
Yaman, M. (2019). Teknologi Penanganan, Pengolahan Limbah Ternak Dan Hasil Samping Peternakan (Pertama). Syiah Kuala University Press. https://books.google.com/books?hl=id&lr=&id=tSC_DwAAQBAJ&oi=fnd&pg=PP1&dq=limbah+tulang+ternak&ots=ESiLLeUX9h&sig=yaK3PRZjRuuk-f7hzu-PqnIvFJQ
Downloads
Published
Issue
Section
License
Proposed Policy for Journals That Offer Open Access Authors who publish with the Elkawnie journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).