SUPERHYDROPHOBIC/SUPEROLEOPHILIC POLYURETHANE FOAMS MODIFIED SILICA NANOPARTICLES AS AN ABSORBENT FOR OIL- WATER SEPARATION
Abstrak
Due to the technology development, the commercial polyurethane foam (PUF) modified with silica nanoparticles (Si-NPs) and lauric acid (LA) was used to synthesis the superhydrophobic/superoleophilic absorbent to remove the oily contaminant from oil/water mixture in the oil industry. The facile dip-coating method has been used to generate PUF-Si-LA through ultrasonication and relux at 70 °C for 12 h. Additionally, the FTIR, SEM, and EDX, characterization results displayed that the raw materials were identically distributed throughout the PUF surface as can be observed from the strong chelating bond between the carboxylates, hydroxide, and silica active surface. The water contact angle (WCA) was observed up to 158° presenting powerful superhydrophobicity. The absorption capacity results of the PUF-Si-LA for the tested oils and organic solvents are high ranging from 23.00 to 40.00 g/g after 20 consecutive cycles varied from the samples. The oil removal from water-oil mixture revealed a quick absorption of oil contaminant within few seconds. These features presented that the PUF Si-LA nanocomposite is expected to be a future promising absorbent in a wide range of applications due to long-term performance, high mechanical, and thermal stability in various environmental treatments.Keywords: Polyurethane, superhydrophobic, nanocomposites, oil/water separation, and emulsion
Referensi
Jamsaz A, Goharshadi EK. An environmentally friendly superhydrophobic modified
polyurethane sponge by seashell for the efficient oil / water separation. Process Saf
Environ Prot. 2020;139:297-304. doi:10.1016/j.psep.2020.04.042
Wang J, Wang H, Geng G. Flame-retardant superhydrophobic coating derived from fly
ash on polymeric foam for efficient oil/corrosive water and emulsion separation. J
Colloid Interface Sci. 2018;525:11-20. doi:10.1016/j.jcis.2018.04.069
Motta FL, Stoyanov SR, Soares JBP. Development and application of an amylopectin-
graft-poly(methyl acrylate) solidifier for rapid and efficient containment and recovery of
heavy oil spills in aqueous environments. Chemosphere. 2019;236.
doi:10.1016/j.chemosphere.2019.124352
Li ZT, Wu HT, Chen WY, He FA, Li DH. Preparation of magnetic superhydrophobic
melamine sponges for effective oil-water separation. Sep Purif Technol.
;212(November 2018):40-50. doi:10.1016/j.seppur.2018.11.002
Lv X, Tian D, Peng Y, Li J, Jiang G. Superhydrophobic magnetic reduced graphene oxide-
decorated foam for efficient and repeatable oil-water separation. Appl Surf Sci.
;466(September 2018):937-945. doi:10.1016/j.apsusc.2018.10.110
Kong L, Li Y, Qiu F, et al. Fabrication of hydrophobic and oleophilic polyurethane foam
sponge modified with hydrophobic Al2O3 for oil/water separation. J Ind Eng Chem.
;58:369-375. doi:10.1016/j.jiec.2017.09.050
Chu Z, Feng Y, Seeger S. Oil/water separation with selective
superantiwetting/superwetting surface materials. Angew Chemie - Int Ed.
;54(8):2328-2338. doi:10.1002/anie.201405785
Ma W, Zhao J, Oderinde O, et al. Durable superhydrophobic and superoleophilic
electrospun nanofibrous membrane for oil-water emulsion separation. J Colloid Interface
Sci. 2018;532:12-23. doi:10.1016/j.jcis.2018.06.067
Feng X, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater.
;18(23):3063-3078. doi:10.1002/adma.200501961
Sarbada S, Shin YC. Superhydrophobic contoured surfaces created on metal and polymer
using a femtosecond laser. Appl Surf Sci. 2017;405:465-475.
doi:10.1016/j.apsusc.2017.02.019
Wang Z, Elimelech M, Lin S. Environmental Applications of Interfacial Materials with
Special Wettability. Environ Sci Technol. 2016;50(5):2132-2150.
doi:10.1021/acs.est.5b04351
Kaur H, Bulasara VK, Gupta RK. Influence of pH and temperature of dip-coating solution
on the properties of cellulose acetate-ceramic composite membrane for ultrafiltration.
Carbohydr Polym. 2018;195(February):613-621. doi:10.1016/j.carbpol.2018.04.121
Drelich J, Chibowski E, Meng DD, Terpilowski K. Hydrophilic and superhydrophilic
surfaces and materials. Soft Matter. 2011;7(21):9804-9828. doi:10.1039/c1sm05849e
Sharma R, Alam F, Sharma AK, Dutta V, Dhawan SK. ZnO anchored graphene
hydrophobic nanocomposite-based bulk heterojunction solar cells showing enhanced
short-circuit current. J Mater Chem C. 2014;2(38):8142-8151. doi:10.1039/c4tc01056f
Cao N, Yang B, Barras A, Szunerits S, Boukherroub R. Polyurethane sponge
functionalized with superhydrophobic nanodiamond particles for efficient oil/water
separation. Chem Eng J. 2017;307:319-325. doi:10.1016/j.cej.2016.08.105
Sabouri MR, Javanbakht V, Ghotbabadi DJ, Mehravar M. Oily wastewater treatment by a
magnetic superoleophilic nanocomposite foam. Process Saf Environ Prot. 2019;126:182-
doi:10.1016/j.psep.2019.04.006
Li H, Liu L, Yang F. Hydrophobic modification of polyurethane foam for oil spill cleanup.
Mar Pollut Bull. 2012;64(8):1648-1653. doi:10.1016/j.marpolbul.2012.05.039
Ge B, Zhu X, Li Y, Men X, Li P, Zhang Z. Versatile fabrication of magnetic
superhydrophobic foams and application for oil-water separation. Colloids Surfaces A
Physicochem Eng Asp. 2015;482:687-692. doi:10.1016/j.colsurfa.2015.05.061
Zhang R, Wu Y, Zhang H, Xue S, Guo M, Zhang T. A facile strategy toward hydrophobic–
oleophilic 3D Fe foam for efficient oil–water separation. J Mater Sci. 2019;54(20):13358-
doi:10.1007/s10853-019-03819-8
Tawfik A. Saleh, Nadeem Baig a FIA and NWA. A flexible biomimetic superhydrophobic
and superoleophilic 3D macroporous polymer-based robust network for the efficient
separation of oilcontaminated water. RSC Adv. 2020;10:5088-5097.
doi:10.1039/c9ra06579b
Wang H, Wang E, Liu Z, et al. A novel carbon nanotubes reinforced superhydrophobic
and superoleophilic polyurethane sponge for selective oil-water separation through a
chemical fabrication. J Mater Chem A. 2015;3(1):266-273. doi:10.1039/c4ta03945a
Parsaie A, Tamsilian Y, Pordanjani MR, Abadshapoori AK, McKay G. Novel approach for
rapid oil/water separation through superhydrophobic/ superoleophilic zinc stearate
coated polyurethane sponges. Colloids Surfaces A Physicochem Eng Asp.
;618(February):126395. doi:10.1016/j.colsurfa.2021.126395
Zhang X, Liu D, Ma Y, Nie J, Sui G. Applied Surface Science Super-hydrophobic graphene
coated polyurethane ( GN @ PU ) sponge with great oil-water separation performance.
Appl Surf Sci. 2017;422:116-124. doi:10.1016/j.apsusc.2017.06.009