AKTIVITAS ANTIBAKTERI EKSTRAK DAN FRAKSI N-HEKSANA KULIT BUAH KAKAO (Theobroma cacao L.)
DOI:
https://doi.org/10.22373/lj.v13i1.29989Keywords:
Antibacterial, Cacao Pod Husk, Staphylococcus aureus, Theobroma cacao L.Abstract
This study aims to evaluate the antibacterial activity of the n-hexane extract and fraction of cocoa pod husk against Staphylococcus aureus. The antibacterial was tested using the paper disc diffusion method. The results showed that the extract inhibited bacterial with inhibition zones of 7.13 ± 0.29; 8.58 ± 0.14; 9.60 ± 0.87; and 10.97 ± 0.08 mm at concentrations of 1%, 5%, 10%, and 20%, respectively. The fractionation process produced 9 fractions and the 9th fraction showed the greatest inhibitory activity with inhibition zone diameters of 7.42 ± 0.03; 9.22 ± 0.03; 10.43 ± 0.03; and 11.83 ± 0.03 mm at concentrations of 1%; 5%; 10%; and 20% respectively. Phytochemical analysis and thin-layer chromatography (TLC) showed the presence of terpenoid and steroid compounds. Based on the antibacterial activity exhibited by the extract and fraction, this plant shows potential to be developed as a source of natural antibacterials.References
Adi-Dako, O., Ofori-Kwakye, K., Frimpong Manso, S., Boakye-Gyasi, M. E., Sasu, C., & Pobee, M. (2016). Physicochemical and Antimicrobial Properties of Cocoa Pod Husk Pectin Intended as a Versatile Pharmaceutical Excipient and Nutraceutical. J Pharm (Cairo), 2016, 7608693. https://doi.org/10.1155/2016/7608693
Elkhalifa, A. E. O., Alshammari, E., Adnan, M., Alcantara, J. C., Awadelkareem, A. M., Eltoum, N. E., Mehmood, K., Panda, B. P., & Ashraf, S. A. (2021). Okra (Abelmoschus Esculentus) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications. Molecules, 26(3). https://doi.org/10.3390/molecules26030696
Febrina, R. V., Yahya, M., & Windananti, S. (2024). Toxicity of methanolic extract from cocoa pod husk (Theobroma cacao L) using brine shrimp lethality test (BSLT). IOP Conference Series: Earth and Environmental Science, 1356(1). https://doi.org/10.1088/1755-1315/1356/1/012110
Gach, M. W., Lazarus, G., Simadibrata, D. M., Sinto, R., Saharman, Y. R., Limato, R., Nelwan, E. J., van Doorn, H. R., Karuniawati, A., & Hamers, R. L. (2024). Antimicrobial resistance among common bacterial pathogens in Indonesia: a systematic review. Lancet Reg Health Southeast Asia, 26, 100414. https://doi.org/10.1016/j.lansea.2024.100414
Guimaraes, A. C., Meireles, L. M., Lemos, M. F., Guimaraes, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules, 24(13). https://doi.org/10.3390/molecules24132471
Han, Y., Sun, Z., & Chen, W. (2019). Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules, 25(1). https://doi.org/10.3390/molecules25010033
Harborne, J. B. (1984). Phytochemical Methods. https://doi.org/10.1007/978-94-009-5570-7
Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Bashiri Dezfouli, A., & Wollenberg, B. (2023). 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother, 167, 115467. https://doi.org/10.1016/j.biopha.2023.115467
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology, 15(1), 1-23.
Indriani, V., Chiuman, L., Wijaya, L. L., Lister, G., & Grandis, L. (2020). Antibacterial Effect of Curcuma zedoaria Extract on Bacillus cereus and Staphylococcus epidermidis. Althea Medical Journal, 7(1), 6-10. https://doi.org/10.15850/amj.v7n1.1886
Indrianingsih, A. W., Wulanjati, M. P., Windarsih, A., Bhattacharjya, D. K., Suzuki, T., & Katayama, T. (2021). In vitro studies of antioxidant, antidiabetic, and antibacterial activities of Theobroma cacao, Anonna muricata and Clitoria ternatea. Biocatalysis and Agricultural Biotechnology, 33. https://doi.org/10.1016/j.bcab.2021.101995
Jiang, Z., Kempinski, C., & Chappell, J. (2016). Extraction and Analysis of Terpenes/Terpenoids. Curr Protoc Plant Biol, 1, 345-358. https://doi.org/10.1002/cppb.20024
Koohsari, H., Ghaemi, E. A., Sadegh Sheshpoli, M., Jahedi, M., & Zahiri, M. (2015). The investigation of antibacterial activity of selected native plants from North of Iran. J Med Life, 8(Spec Iss 2), 38-42.
Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S. M., & Ajami, M. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit Rev Microbiol, 43(6), 668-689. https://doi.org/10.1080/1040841X.2017.1295225
Mustanir, Nurdin, Ginting, B., & Purnama, A. (2020). Chemical composition and cytotoxic activities of n-Hexane extract from cacao pod husk (Theobroma cacao L.). Chemical Data Collections, 30. https://doi.org/10.1016/j.cdc.2020.100553
Nasir Shah, S., Khan, I., Tul Muntaha, S., Hayat, A., Ur Rehman, M., Ali Shah, T., Siddique, F., Salamatullah, A. M., Mekonnen, A. B., & Bourhia, M. (2023). Bioactive, antioxidant and antimicrobial properties of chemically fingerprinted essential oils extracted from Eucalyptus globulus: in-vitro and in-silico investigations. Front Chem, 11, 1287317. https://doi.org/10.3389/fchem.2023.1287317
Nayim, P., Mbaveng, A. T., Wamba, B. E. N., Fankam, A. G., Dzotam, J. K., & Kuete, V. (2018). Antibacterial and Antibiotic-Potentiating Activities of Thirteen Cameroonian Edible Plants against Gram-Negative Resistant Phenotypes. ScientificWorldJournal, 2018, 4020294. https://doi.org/10.1155/2018/4020294
Romano, E., Domínguez-Rodríguez, G., Mannina, L., Cifuentes, A., & Ibáñez, E. (2025). Characterization of Non-Polar and Polar Bioactive Compounds Obtained by Pressurized Biobased Solvents from Different Arctium lappa L. Root Ecotypes. Applied Sciences, 15(5). https://doi.org/10.3390/app15052491
Santos, R. X., Oliveira, D. A., Sodre, G. A., Gosmann, G., Brendel, M., & Pungartnik, C. (2014). Antimicrobial activity of fermented Theobroma cacao pod husk extract. Genet Mol Res, 13(3), 7725-7735. https://doi.org/10.4238/2014.September.26.10
Satria, D., Dalimunthe, A., Pertiwi, D., Muhammad, M., Kaban, V. E., Nasri, N., & Waruwu, S. B. (2023). Phytochemicals, proximate composition, minerals and volatile oil analysis of Zanthoxylum acanthopodium DC. fruits. F1000Research, 12. https://doi.org/10.12688/f1000research.128941.1
Siahaan, S., Herman, M. J., & Fitri, N. (2022). Antimicrobial Resistance Situation in Indonesia: A Challenge of Multisector and Global Coordination. J Trop Med, 2022, 2783300. https://doi.org/10.1155/2022/2783300
Siddiqui, T., Khan, M. U., Sharma, V., & Gupta, K. (2024). Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomedicine Plus, 4(2). https://doi.org/10.1016/j.phyplu.2024.100549
Syamsiah, S., Hiola, S. F., Mu’nisa, A., & Jumadi, O. (2016). Study on Medicinal Plants Used by the Ethnic Mamuju in West Sulawesi, Indonesia. Journal of Tropical Crop Science, 3(2), 43-48. https://doi.org/10.29244/jtcs.3.2.43-48
Vaillancourt, K., Ben Lagha, A., & Grenier, D. (2022). A Phenolic-rich Extract of Cocoa (Theobroma cacao L.) Beans Impairs the Pathogenic Properties of Porphyromonas gingivalis and Attenuates the Activation of Nuclear Factor Kappa B in a Monocyte Model. Front Oral Health, 3, 867793. https://doi.org/10.3389/froh.2022.867793
Venkatesan, K., Venkatesan, S., & Manivannan, N. (2024). Antibacterial Activity of Hibiscus sabdariffa (Rosella) Using Methanolic Extract. J Pharm Bioallied Sci, 16(Suppl 2), S1191-S1194. https://doi.org/10.4103/jpbs.jpbs_527_23
Vollaro, A., Esposito, A., Esposito, E. P., Zarrilli, R., Guaragna, A., & De Gregorio, E. (2020). PYED-1 Inhibits Biofilm Formation and Disrupts the Preformed Biofilm of Staphylococcus aureus. Antibiotics (Basel), 9(5). https://doi.org/10.3390/antibiotics9050240
Wei, C., Cui, P., & Liu, X. (2023). Antibacterial Activity and Mechanism of Madecassic Acid against Staphylococcus aureus. Molecules, 28(4). https://doi.org/10.3390/molecules28041895
Yahya, M., Ginting, B., & Saidi, N. (2021). In-Vitro Screenings for Biological and Antioxidant Activities of Water Extract from Theobroma cacao L. Pod Husk: Potential Utilization in Foods. Molecules, 26(22). https://doi.org/10.3390/molecules26226915
Yahya, M., Ginting, B., & Saidi, N. (2022). Anticancer and antiretroviral activities of methanolic extract from Theobroma cacao L pod husk: focusing on the ethyl acetate partition. F1000Research, 11. https://doi.org/10.12688/f1000research.128048.1
Downloads
Additional Files
Published
Issue
Section
License
Proposed Policy for Journals That Offer Open Access Authors who publish with Lantanida Journal agree to the following terms: a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal. c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).