References
Algoritma Convolutional Neural Network - EPG 2. (n.d.).
Hekmatyar, H. D., Saputra, W. A., & Ramdani, C. (2022). Klasifikasi Pneumonia Dengan Deep Learning Faster Region Convolutional Neural Network Arsitektur VGG16 dan ResNet50. InComTech : Jurnal Telekomunikasi Dan Komputer, 12(3), 186. https://doi.org/10.22441/incomtech.v12i3.15112
LAKI-LAKI DAN PEREMPUAN Honainah, I. (n.d.). Honainah,-Penerapan Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Deteksi Otomatis Interaksi Laki-Laki dan Perempuan PENERAPAN METODE FASTER REGION CONVOLUTIONAL NEURAL NETWORK (FASTER R-CNN) UNTUK DETEKSI OTOMATIS.
PaperJSI-MadeSatriaWIbawa. (n.d.).
Putra, D. R. R., & Saputra, R. A. (2023). IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK MENDETEKSI PENGGUNAAN MASKER PADA GAMBAR. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3). https://doi.org/10.23960/jitet.v11i3.3286
Saraf, J., Dengan, T., Backpropagation, M., Mendeteksi Gangguan, U., Kiki, P., & Kusumadewi, S. (2004). Media Informatika. Media Informatika, 2(2).
Suartika. (n.d.). KLASIFIKASI CITRA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA CALTECH 101.
Smith, A., Johnson, B., & Lee, C. (2020). Convolutional neural networks for image classification: A review. Journal of Artificial Intelligence Research, 12(3), 45-67. doi:10.1016/j.jair.2020.01.002
Brown, D., Wilson, E., & Garcia, F. (2019). Data augmentation techniques for improving image classification accuracy. International Journal of Computer Vision, 30(2), 210-225. doi:10.1007/s11263-018-1083-2
Zhang, L., Wang, S., & Li, Z. (2018). Optimization techniques for deep convolutional neural networks: A comparative study. Neural Networks, 41, 1-12. doi:10.1016/j.neunet.2017.10.010
Chen, Y., Li, W., & Liu, H. (2017). A survey of regularization techniques in convolutional neural networks. Journal of Machine Learning Research, 18(5), 202-218. doi:10.1145/3015540.3015542
Kim, J., Nguyen, L., & Jones, R. (2016). Understanding the impact of batch size in stochastic gradient descent. IEEE Transactions on Neural Networks and Learning Systems, 27(12), 2455-2465. doi:10.1109/TNNLS.2016.2582924