IMPLEMENTASI ALGORITMA NAIVE BAYES DAN RANDOM FOREST DALAM MEMPREDIKSI PRESTASI AKADEMIK MAHASISWA UNIVERSITAS ISLAM NEGERI AR-RANIRY BANDA ACEH

Bustami Yusuf, Muthmainna Qalbi, Basrul Basrul, Ima Dwitawati, Malahayati Malahayati, Mega Ellyadi

Abstract


Academic achievement is determined by two factors, namely internal factors originating from within the individual in this case students and external factors that come from outside the individual or things that are influenced by the environment. There are many ways to find an academic achievement, one of which uses data mining which aims to predict or classify data using a classification algorithm. This study aims to 1) find out how to apply the Naive Bayes algorithm to student achievement, and 2) see the accuracy of the Naive Bayes algorithm to student achievement. This type of research is secondary data in the form of student data obtained from the information technology center and the Ar-Raniry UIN database. This research uses Naive Bayes algorithm and random forest algorithm. The results obtained from this study indicate the highest correlation value in the initial IP variable of r = 0.783 and the leave variable has a very weak correlation level of r = 0.054. The accuracy value of Naive Bayes algorithm after cleaning is 78.0% and Random Forest algorithm variable is 76.7%.


Keywords


Naive Bayes, Academic Achievement, Random Forest, Prediction, Motivation

Full Text:

PDF

References


Lestari, Diah Indah. 2015. Skripsi. Analisis Data Siswa Menggunakan Klasifikasi Naive Bayes dalam Data Mining untuk Memprediksi Siswa diterima di PTN. Yogyakarta: Universitas Negeri Yogyakarta

Salmu, Supardi. Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naive Bayes. Prosiding Seminar Nasional Multidisiplin llmu, 2017, ISSN : 2087-0930.

Adnyana, I Made Budi. 2015. Prediksi Lama Studi Mahasiswa Dengan Metode Random Forest (Studi Kasus : Stikom Bali). CSRID Journal, Vol. 8 No. 3.

Susanto, Heri. 2014. Data Mining Untuk Memprediksi Prestasi Siswa Berdasarkan Sosial Ekonomi, Motivasi, Kedisiplinan Dan Prestasi Masa Lalu. Jurnal Pendidikan Vokasi Vol 4, No. 2

S.A. Zega. 2014. Penggunaan Pohon Keputusan untuk Klasifikasi Tingkat Kualitas Mahasisa Berdasarkan Jalur Masuk Kuliah.Yogyakarta

Imandasari, Tia dkk. 2019. “Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air (Studi Kasus : STIKOM Tunas Bangsa Pematangsiantar)”. Prosiding Seminar Nasional Riset Information Science (SENARIS), ISSN: 2686-0260

Maulana Dhawangkara, Skripsi “Prediksi Intensitas Hujan Kota Surabaya Dengan Matlab Menggunakan Teknik Random Forest Dan Cart (Studi Kasus Kota Surabaya)” (Surabaya: Institut Teknologi Sepuluh November, 2016) Hal. 26.

Herlina. 2007.Labeling dan Perkembangan Anak. FOTA-Salman

Sarwono, Jonathan. 2012. Mengenal SPSS Satistic 20 : Aplikasi Untuk Riset Ekspreimental. Elex Media Komputindo. Jakarta.




DOI: http://dx.doi.org/10.22373/cj.v4i1.7247

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Bustami Yusuf, Muthmainna Qalbi, Basrul Basrul, Ima Dwitawati, Malahayati Malahayati, Mega Ellyadi



Published by Center for Research and Community Service (LP2M) in cooperation with the Department of Information Technology, Faculty of Education and Teacher Training, State Islamic University (UIN) Ar-Raniry Banda Aceh.

P-ISSN: 2598-2079  //  E ISSN : 2597-9671 

Creative Commons License

Cyberspace is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.