Specific Sequence Motif of Var Gene as Predictor of Malaria Outcome

Erma Sulistyaningsih, Rosita Dewi, Sheilla Rachmania, Irawan Fajar Kusuma, Sahrir Sillehu

Abstract


Abstract: The Var gene family encodes for Plasmodium falciparum Erythrocyte Membrane Protein-1 (PfEMP1), a protein responsible for malaria pathogenesis. One of the variants, the var D gene, is hypothesized as a predictor of clinical malaria outcomes. The study aimed to investigate the association between the expression of the var D gene and clinical malaria outcomes. Blood spots on filter paper from uncomplicated and severe malaria patients were collected for DNA and RNA extraction. The RNA was reverse-transcribed into cDNA. DNA and cDNA were amplified by Polymerase Chain Reaction (PCR) technique using specific var D primer, and PCR products were electrophorized in 1% agarose. DNA amplification resulted in double bands of approximately 230 bp and 250 bp in uncomplicated and severe malaria samples. However, the cDNA amplification generated a single band of 230 bp from four out of five severe malaria samples. The existence of band solely in severe malaria transcript suggested its involvement in the pathogenesis of severe malaria. In conclusion, the expression of var D gene-specific sequence can be a potential predictor of severe malaria outcomes.

Abstrak: Famili gen var mengkode Plasmodium falciparum Erythrocyte Membrane Protein-1 (PfEMP1), suatu protein yang berperan penting dalam proses patogenesis malaria. Salah satu variannya, gen var D, diduga merupakan prediktor gambaran klinis malaria. Penelitian ini bertujuan untuk mengetahui hubungan antara ekspresi gen var D  dan gambaran klinis malaria. Sampel berupa tetesan darah pada kertas filter dari pasien malaria tanpa komplikasi dan malaria berat dikumpulkan untuk diekstraksi DNA dan RNAnya. RNA selanjutnya di trankripsi reverse menjadi cDNA. DNA dan cDNA diamplifikasi dengan teknik PCR menggunakan primer spesifik var D dan produk PCR dielektroforesis menggunakan agarosa 1 %. Amplifikasi DNA menghasilkan beragam pita berukuran sekitar 230 bp dan 250 bp pada sampel malaria tanpa komplikasi dan malaria berat, tetapi amplifikasi cDNA hanya menunjukkan satu pita berukuran 230 bp pada 4 dari 5 sampel malaria berat. Keberadaan pita hanya pada sampel malaria berat mengindikasikan peran gen ini dalam patogenesis malaria berat. Disimpulkan bahwa gen var D dapat ditemukan pada sampel malaria tanpa komplikasi dan berat, namun ekpresi gen tersebut dapat menjadi prediktor yang potensial  timbulnya manifestasi klinis malaria berat.


Keywords


malaria; Plasmodium falciparum; RNA extraction

Full Text:

PDF

References


Almelli, T., Ndam, N. T., Ezimegnon, S., Alao, M. J., Ahouansou, C., Sagbo, G., Amoussou, A., Deloron, P., & Tahar, R. (2014). Cytoadherence phenotype of Plasmodium falciparum-infected erythrocytes is associated with specific pfemp-1 expression in parasites from children with cerebral malaria. Malaria Journal, 13(1), 1–9. https://doi.org/10.1186/1475-2875-13-333

Ariey, F., Hommel, D., Le Scanf, C., Duchemin, J. B., Peneau, C., Hulin, A., Sarthou, J. L., Reynes, J. M., Fandeur, T., & Mercereau-Puijalon, O. (2001). Association of severe malaria with a specific Plasmodium falciparum genotype in French Guiana. Journal of Infectious Diseases, 184(2), 237–241. https://doi.org/10.1086/322012

Bengtsson, A., Joergensen, L., Rask, T. S., Olsen, R. W., Andersen, M. A., Turner, L., Theander, T. G., Hviid, L., Higgins, M. K., Craig, A., Brown, A., & Jensen, A. T. R. (2013). A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies. The Journal of Immunology, 190(1), 240–249. https://doi.org/10.4049/jimmunol.1202578

Bernabeu, M., Danziger, S. A., Avril, M., Vaz, M., Babar, P. H., Brazier, A. J., Herricks, T., Maki, J. N., Pereira, L., Mascarenhas, A., Gomes, E., Chery, L., Aitchison, J. D., Rathod, P. K., & Smith, J. D. (2016). Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proceedings of the National Academy of Sciences of the United States of America, 113(23), E3270–E3279. https://doi.org/10.1073/pnas.1524294113

Duffy, F., Bernabeu, M., Babar, P. H., Kessler, A., Wang, C. W., Vaz, M., Chery, L., Mandala, W. L., Rogerson, S. J., Taylor, T. E., Seydel, K. B., Lavstsen, T., Gomes, E., & Smith, J. D. (2019). Adults. 10(2), 1–16.

Flick, K., & Chen, Q. (2004). var genes, PfEMP1 and the human host. Molecular and Biochemical Parasitology, 134(1), 3–9. https://doi.org/10.1016/j.molbiopara.2003.09.010

Grabias, B., Essuman, E., Quakyi, I. A., & Kumar, S. (2019). Sensitive real-time PCR detection of Plasmodium falciparum parasites in whole blood by erythrocyte membrane protein 1 gene amplification. Malaria Journal, 18(1), 1–9. https://doi.org/10.1186/s12936-019-2743-9

Hermansyah, B., Fitri, L. E., Sardjono, T. W., Endharti, A. T., Arifin, S., Budiarti, N., Candradikusuma, D., Sulistyaningsih, E., & Berens-Riha, N. (2017). Clinical features of severe malaria: Protective effect of mixed plasmodial malaria. Asian Pacific Journal of Tropical Biomedicine, 7(1), 4–9. https://doi.org/10.1016/j.apjtb.2016.11.001

Jensen, A. R., Adams, Y., & Hviid, L. (2020). Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunological Reviews, 293(1), 230–252. https://doi.org/10.1111/imr.12807

Kessler, A., Dankwa, S., Bernabeu, M., Harawa, V., Danziger, S. A., Duffy, F., Kampondeni, S. D., Potchen, M. J., Dambrauskas, N., Vigdorovich, V., Oliver, B. G., Hochman, S. E., Mowrey, W. B., Ian, J. C., Mandala, W. L., Rogerson, S. J., Sather, D. N., & John, D. (2018). cerebral malaria. 22(5), 601–614. https://doi.org/10.1016/j.chom.2017.09.009.Linking

Kessler, A., Dankwa, S., Bernabeu, M., Harawa, V., Danziger, S. A., Duffy, F., Kampondeni, S. D., Potchen, M. J., Dambrauskas, N., Vigdorovich, V., Oliver, B. G., Hochman, S. E., Mowrey, W. B., MacCormick, I. J. C., Mandala, W. L., Rogerson, S. J., Sather, D. N., Aitchison, J. D., Taylor, T. E., … Kim, K. (2017). Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host and Microbe, 22(5), 601-614.e5. https://doi.org/10.1016/j.chom.2017.09.009

Kotepui, M., Kotepui, K. U., De Jesus Milanez, G., & Masangkay, F. R. (2020). Plasmodium spp. mixed infection leading to severe malaria: a systematic review and meta-analysis. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-68082-3

Lalchhandama, K. (2017). Plasmodium falciparum erythrocyte membrane protein 1. WikiJournal of Medicine, 4(1), 1–8. https://doi.org/10.15347/wjm/2017.004

Lavstsen, T., Turner, L., Saguti, F., Magistrado, P., Rask, T. S., Jespersen, J. S., Wang, C. W., Berger, S. S., Baraka, V., Marquard, A. M., Seguin-Orlando, A., Willerslev, E., Gilbert, M. T. P., Lusingu, J., & Theander, T. G. (2012). Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 1791–1800. https://doi.org/10.1073/pnas.1120455109

Milner, D. A. (2018). Malaria Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 8(1), 1–11. https://doi.org/10.1101/cshperspect.a025569

Mkumbaye, S. I., Wang, C. W., Lyimo, E., Jespersen, J. S., Manjurano, A., Mosha, J., Kavishe, R. A., Mwakalinga, S. B., Minja, D. T. R., Lusingu, J. P., Theander, T. G., & Lavstsen, T. (2017). The severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1. Infection and Immunity, 85(4), 1–14. https://doi.org/10.1128/IAI.00841-16

Obeng-Adjei, N., Larremore, D. B., Turner, L., Ongoiba, A., Li, S., Doumbo, S., Yazew, T. B., Kayentao, K., Miller, L. H., Traore, B., Pierce, S. K., Buckee, C. O., Lavstsen, T., Crompton, P. D., & Tran, T. M. (2020). Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection. JCI Insight, 5(12). https://doi.org/10.1172/jci.insight.137262

Plewes, K., Turner, G. D. H., & Dondorp, A. M. (2018). Pathophysiology, clinical presentation, and treatment of coma and acute kidney injury complicating falciparum malaria. Current Opinion in Infectious Diseases, 31(1), 69–77. https://doi.org/10.1097/QCO.0000000000000419

Rask, T. S., Hansen, D. A., Theander, T. G., Pedersen, A. G., & Lavstsen, T. (2010). Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes - divide and conquer. PLoS Computational Biology, 6(9). https://doi.org/10.1371/journal.pcbi.1000933

Shabani, E., Hanisch, B., Opoka, R. O., Lavstsen, T., & John, C. C. (2017). Plasmodium falciparum EPCR-binding PfEMP1 expression increases with malaria disease severity and is elevated in retinopathy negative cerebral malaria. BMC Medicine, 15(1), 1–14. https://doi.org/10.1186/s12916-017-0945-y

Smith, J. D. (2014). The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol Biochem Parasitol., 195(2), 82–87. https://doi.org/10.1016/j.molbiopara.2014.07.006

Sulistyaningsih, E., Fitri, L. E., Löscher, T., & Berens-Riha, N. (2013). Diversity of the var gene family of Indonesian Plasmodium falciparum isolates. Malaria Journal, 12(1). https://doi.org/10.1186/1475-2875-12-80

Thylur, R. P., Wu, X., Gowda, N. M., Punnath, K., Neelgund, S. E., Febbraio, M., & Channe Gowda, D. (2017). CD36 receptor regulates malaria-induced immune responses primarily at early blood stage infection contributing to parasitemia control and resistance to mortality. Journal of Biological Chemistry, 292(22), 9394–9408. https://doi.org/10.1074/jbc.M117.781294

Turner, L., Lavstsen, T., Berger, S. S., Wang, C. W., Petersen, J. E. V., Avril, M., Brazier, A. J., Freeth, J., Jespersen, J. S., Nielsen, M. A., Magistrado, P., Lusingu, J., Smith, J. D., Higgins, M. K., & Theander, T. G. (2013). Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature, 498(7455), 502–505. https://doi.org/10.1038/nature12216

WHO. (2014). Severe Malaria. Trop Med Int Health, 19(Suppl I), 7–131.

Wiser, M. F. (2023). Knobs, Adhesion, and Severe Falciparum Malaria. Tropical Medicine and Infectious Disease, 8(7). https://doi.org/10.3390/tropicalmed8070353

World Health Organization (WHO), 2000. (2020). World Malaria Report 2020. In Who (Vol. 73, Issue 1). https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020




DOI: http://dx.doi.org/10.22373/ekw.v10i1.14808

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Erma Sulistyaningsih, Rosita Dewi, Sheilla Rachmania, Irawan Fajar Kusuma, Sahrir Sillehu

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter