Production of Lipase Enzyme by Marine Actinobacteria With Various pH and Temperature
Abstract
Abstract: The demand for enzymes as biocatalysts in industry is very high. Research and development of different types of enzymes from different sources has started. One very important enzyme to study is the enzyme lipase. Lipase enzymes are enzymes of the hydrolase class that catalyze the hydrolysis of triglycerides to glycerol and free fatty acids. Lipases are found in a variety of sources including animals, plants, and microorganisms. Marine microorganisms, including marine actinobacteria, cannot be separated from this enzyme source's research and development process. The purpose of this study was to obtain a test protocol and optimal pH and temperature conditions for the hydrolysis reaction by lipase enzymes from marine actinobacteria. Optimal pH and temperature conditions for hydrolysis reactions by lipase enzymes from marine actinobacteria using spectrophotometry at different pH values and different temperatures of 3, 4, 5, 6, 7, 8, 9, and 10. Temperatures of 30 °C, 40 °C, 50 °C, 60 °C, 70 °C, 80 °C and 90 °C are measured at a wavelength of 405 nm. The results showed that the activity of the lipase enzyme at pH 9 with Tris-HCl buffer was the optimum pH, and the temperature of 70°C was the optimum temperature for the lipase hydrolysis reaction of marine actinobacteria.
Abstrak: Kebutuhan enzim sebagai biokatalisator dalam bidang industri sangat tinggi. Berbagai macam enzim dari beragam sumber sudah mulai diteliti dan dikembangkan. Salah satu enzim yang sangat penting untuk diteliti adalah enzim lipase. Enzim lipase merupakan enzim golongan hidrolase yang mengkatalis proses hidrolisis trigliserida menjadi gliserol dan asam lemak bebas. Lipase dapat ditemukan dalam berbagai sumber seperti pada hewan, tumbuhan, dan mikroorganisme. Mikroorganisme laut tidak terlepas dari proses penelitian dan pengembangan sumber enzim ini termasuk Actinobacteria laut. Tujuan penelitian ini adalah untuk memperoleh protokol uji dan kondisi pH dan temperatur optimum reaksi hidrolisis oleh enzim lipase dari Actinobacteria laut. Kondisi pH dan temperatur optimum reaksi hidrolisis oleh enzim lipase dari Actinobacteria laut dilakukan secara kuantitatif dengan metode spektrofotometri pada variasi pH 3, 4, 5, 6, 7, 8, 9, dan 10 dan variasi suhu 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, dan 90°C diukur pada Panjang gelombang 405 nm. Hasil menunjukkan bahwa aktivitas enzim lipase pada pH 9 menggunakan buffer Tris HCl merupakan pH optimum dan temperatur 70°C merupakan temperature optimum reaksi hidrolisis enzim lipase dari Actinobacteria laut.
Keywords
Full Text:
PDFReferences
Agustriana, E., Rahmani, N., Rachmayati, R., Andriani, A., Yulianti, S. E., Masruchin, N., & Lisdiyanti, P. (2023, May). Lipase-producing Marine Actinomycetes Having Potential to Degrade PET Film. In IOP Conference Series: Earth and Environmental Science (Vol. 1163, No. 1, p. 012008). IOP Publishing.
Almeida, B. C., Figueiredo, P., & Carvalho, A. T. (2019). Polycaprolactone enzymatic hydrolysis: a mechanistic study. ACS Omega, 4, 6769-6774.
Amaturrahim, R. A., Yusak, Y., & Sebayang, F. (2020). Determination of Optimum pH and Temperature for Crude Extract of Lipase Enzyme from Sprouts Palm Oil Seeds (Elaeis guineensis Jacq) Against Hydrolysis RBDPO (Refined Bleached Deodorized Palm Oil). Journal of Chemical Natural Resources Vol, 2(01), 73-79.
Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial cell factories, 19, 1-42.
Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current opinion in biotechnology, 69, 68-76.
Hutasoit, N., Ina, P. T., & Permana, I. D. G. M. (2017). Optimasi pH dan Temperatur pada Aktivitas Enzim Lipase dari Biji Kakao (Theobroma cacao L.) Berkapang. Jurnal Ilmu dan Teknologi Pangan, 5, 95-102.
Kumar, A., Mukhia, S., Kumar, N., Acharya, V., Kumar, S., & Kumar, R. (2020). A broad temperature active lipase purified from a psychrotrophic bacterium of Sikkim Himalaya with potential application in detergent formulation. Frontiers in bioengineering and biotechnology, 8, 642.
Lim, S. Y., Steiner, J. M., & Cridge, H. (2022). Lipases: it's not just pancreatic lipase!. American journal of veterinary research, 83(8).
Lehninger, A. L. (1995). Dasar-Dasar Biokimia. Erlangga, Jakarta.
Muazi AA., Anwar, Y., EM Abo-Aba, S., & M Bataweel, N. (2023). A review on Actinomycetes distribution, isolation, and their medical applications. Novel Research in Microbiology Journal, 7(2), 1918-1931.
Mukhtar, S., Zaheer, A., Aiysha, D., Malik, K. A., Mehnaz, S. (2017). Actinomycetes: A Source of Industrially Important Enzymes. Journal of Proteomics and Bioinformatics, 10, 316-319.
Murtius, W. S., Hari, P. D., & Putri, I. N. (2022, July). The Effect of Incubation Time to The Activity of Lipase Produced by Bacillus thuringiensis on Coconut (Cocos nucifera L.) Dregs. In IOP Conference Series: Earth and Environmental Science (Vol. 1059, No. 1, p. 012076). IOP Publishing.
Ngamcharungchit, C., Chaimusik, N., Panbangred, W., Euanorasetr, J., & Intra, B. (2023). Bioactive metabolites from terrestrial and marine Actinomycetes. Molecules, 28(15), 5915.
Priya, B. S., Stalin, T., & Selvam, K. (2012). Efficient utilization of xylanase and lipase producing thermophilic marine Actinomycetes (Streptomyces albus and Streptomyces hygroscopicus) in the production of ecofriendly alternative energy from waste. African Journal of Biotechnology, 11(78), 14320-14325.
Rozirwan, R., Muda, H. I., & Ulqodry, T. Z. (2020). Antibacterial potential of Actinomycetes isolated from mangrove sediment in Tanjung Api-Api, South Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(12).
Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial‐producing Actinomycetes from soil samples. International journal of microbiology, 2020(1), 2716584.
Sarkar, G., & Suthindhiran, K. (2022). Diversity and biotechnological potential of marine actinomycetes from India. Indian Journal of Microbiology, 62(4), 475-493.
Selim, M. S. M., Abdelhamid, S. A., & Mohamed, S. S. (2021). Secondary metabolites and biodiversity of Actinomycetes. Journal of Genetic Engineering and Biotechnology, 19(1), 72.
Seshadri, R., Roux, S., Huber, K. J., Wu, D., Yu, S., Udwary, D., ... & Ivanova, N. N. (2022). Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. Cell genomics, 2(12).
Sharma, M., Dangi, P., & Choudhary, M. (2014). Actinomycetes: source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences, 3(2), 801-832.
Subramani, R., & Sipkema, D. (2019). Marine rare Actinomycetes: a promising source of structurally diverse and unique novel natural products. Marine drugs, 17(5), 249.
Tischler, D., Van Berkel, W. J., & Fraaije, M. W. (2019). Actinobacteria, a source of biocatalytic tools. Frontiers in microbiology, 10, 800.
Vertygo, S., Tang, B. Y., Pahnael, G., & Salih, S. (2021). Isolation of six marine Actinomycetes from mangrove sediment of Oesapa beach and screening for hydrolytic exoenzymes as feed additives. Partner, 26(2), 1659-1669.
DOI: http://dx.doi.org/10.22373/ekw.v10i2.16724
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Rizqi Aulia, Eva Agustriana, Lenni Fitri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
P-ISSN : 2460-8912
E-ISSN : 2460-8920
ELKAWNIE
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.
View full page view stats report click here