Removal of Lead Ion (Pb2+) in Water Using Modified Clay-Carbon-Manganese Monolith: Characterization and Adsorption Studies

Hafni Putri Indriani Indra, Darmadi Darmadi, Adisalamun Adisalamun, Aula Chairunnisak, Nasrullah RCL


Abstract:  In recent years, the presence of heavy metals in water has been a concern, and some purification processes have been developed to overcome these problems. This study aims to conduct and investigate the performance of the 3 modifications of adsorbents namely clay-carbon, clay-carbon manganese monolith 2% and clay-carbon manganese monolith 5% in adsorbing Pb2+ ions in water. The surfaces and elemental compositions of the two adsorbents were investigated by a scanning electron microscope and Fourier infrared transform. The variables evaluated in analyzing the adsorption efficiencies were the effect of contact time (0, 150, 180, 210, and 240 minutes), MnO2 doses in monolith (2 and 5% weight) and initial Pb2+ ion concentrations (2 and 4 mg/L). The adsorption behaviour in the equilibrium stage was observed through the isotherms (Freundlich, Langmuir, and Brunauer–Emmett–Teller (BET)) and kinetics study (pseudo-first and pseudo-second order linear-non linear models). The impregnation of manganese into the adsorbent showed significant results in adsorption. The maximum adsorption efficiency was 92.92% in a Pb2+ solution of 4 mg/L utilizing clay-carbon-manganese monolith at a contact time of 240 minutes. Meanwhile, the clay-carbon monolith efficiency was 50.59%. Thus, the modification biomass material with the impregnation of metal such as clay-carbon-manganese monolith can be used as a potent, reusable, and durable adsorbent in removing metal ions in water and wastewater.

Abstrak: Dalam beberapa tahun terakhir, keberadaan logam berat dalam air masih menjadi perhatian dan beberapa proses pemurnian dikembangkan untuk mengatasi masalah ini. Adsorpsi adalah proses yang efisien dan murah untuk mengolah air yang mengandung logam berat. Penelitian ini bertujuan untuk melakukan dan menyelidiki kinerja monolit tanah liat-karbon dan tanah liat-karbon mangan dalam mengadsorpsi ion Pb2+ dalam air. Permukaan dan komposisi unsur dari dua adsorben diselidiki dengan mikroskop elektron dan transformasi inframerah fourier. Variabel yang dinilai dalam analisis efisiensi adsorpsi adalah pengaruh waktu kontak (0, 150, 180, 210 dan 240 menit), dosis MnO2 dalam monolit (2 dan 5% berat) dan konsentrasi ion Pb2+ awal (2 dan 4 mg/L). ). Perilaku adsorpsi pada tahap kesetimbangan diamati melalui isoterm (Freundlich, Langmuir dan Brunauer–Emmett–Teller (BET)) dan studi kinetika (model linier-non linier orde satu semu dan semu dua). Impregnasi mangan ke dalam adsorben menunjukkan hasil yang signifikan dalam adsorpsi. Efisiensi adsorpsi ion Pb2+ tertinggi diperoleh 92,92% pada konsentrasi larutan 4 mg/L dengan penggunaan monolit lempung-karbon-mangan pada waktu kontak 240 menit. Sedangkan efisiensi clay-carbon monolit sebesar 50,59%. Perilaku adsorpsi ion Pb2+ baik pada karbon lempung maupun monolit karbon-lempung-mangan paling sesuai dengan model orde satu non linier dan isoterm Langmuir, dimana adsorpsi terjadi pada permukaan adsorben monolayer. Dengan demikian, bahan biomassa modifikasi dengan impregnasi logam seperti monolit tanah liat-karbon-mangan dapat digunakan sebagai adsorben yang kuat, dapat digunakan kembali, dan tahan lama dalam menghilangkan ion logam dalam air dan air limbah.


Pb2+ ions; adsorption; clay; carbon; manganese; monolith

Full Text:



Abbas, T., Kajjumba, G. W., Ejjada, M., Masrura, S. U., Marti, E. J., Khan, E., & Jones-Lepp, T. L. (2020). Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. Water, 12(10).

Ahrouch, M., Gatica, J. M., Draoui, K., Bellido, D., & Vidal, H. (2019). Lead removal from aqueous solution by means of integral natural clays honeycomb monoliths. Journal of Hazardous Materials, 365, 519–530.

Alam, G., Ihsanullah, I., Naushad, Mu., & Sillanpää, M. (2022). Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chemical Engineering Journal, 427, 130011.

Bergaya, F., & Lagaly, G. (2001). Surface modification of clay minerals. Applied Clay Science, 19, 1–3.

Chairunnisak, A., Darmadi, D., Adisalamun, A., Yusuf, M., Mukhtar, S., Safitri, U. R., & Shafira, O. A. (2023). Study of Synthesis and Performance of Clay and Clay-Manganese Monoliths for Mercury Ion Removal from Water. Jurnal Kimia Sains Dan Aplikasi, 26(4), 133–142.

Chanra, J., Budianto, E., & Soegijono, B. (2019). Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method. IOP Conference Series: Materials Science and Engineering, 509(1).

Darmadi, Choong, T. S., Robiah, Y. T. Y., Chuah, T., & Taufiq Yap, Y. (2008). Adsorption of Methylene Blue from Aqueous Solutions on Carbon Coated Monolith. In AJChE (Vol. 8, Issue 1).

Darmadi, Ismi, N., Syamsuddin, Y., Adisalamun, & Aulia Sugianto, V. (2021). Adsorption of Iron (II) Ion by Using Magnetite-Bentonite-Based Monolith from Water.

Darmadi, Lubis, M. R., Masrura, M., Syahfatra, A., & Mahidin. (2023). Clay and Zeolite-Clay Based Monoliths as Adsorbents for the Hg(II) Removal from the Aqueous Solutions. International Journal of Technology, 14(1), 129–141.

de la Luz-Asunción, M., Pérez-Ramírez, E. E., Martínez-Hernández, A. L., García-Casillas, P. E., Luna-Bárcenas, J. G., & Velasco-Santos, C. (2020). Adsorption and kinetic study of Reactive Red 2 dye onto graphene oxides and graphene quantum dots. Diamond and Related Materials, 109, 108002.

Emam, E. (2013). Modified Activated Carbon and Bentonite Used to Adsorb Petroleum Hydrocarbons Emulsified in Aqueous Solution. American Journal of Environmental Protection, 2, 161.

Fabryanty, R., Valencia, C., Soetaredjo, F. E., Putro, J. N., Santoso, S. P., Kurniawan, A., Ju, Y.-H., & Ismadji, S. (2017). Removal of crystal violet dye by adsorption using bentonite–alginate composite. Journal of Environmental Chemical Engineering, 5(6), 5677–5687.

Faghihi, S., Keykhosravi, A., & Shahbazi, K. (2019). Modeling of kinetic adsorption of natural surfactants on sandstone minerals: Spotlight on accurate prediction and data evaluation. Colloid and Interface Science Communications, 33, 100208.

Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689.

Jakfar, Husin, H., Muslim, A., Darmadi, Nasution, F., & Erdiwansyah. (2021). Lead (II) removal from aqueous solution over Al-pillared bentonite as low-cost adsorbent and optimization. Groundwater for Sustainable Development, 15, 100682.

Karri, R. R., & Sahu, J. N. (2018). Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment. Journal of Environmental Management, 206, 178–191.

Li, X., Kant, A., He, Y., Thakkar, H. v, Atanga, M. A., Rezaei, F., Ludlow, D. K., & Rownaghi, A. A. (2016). Light olefins from renewable resources: Selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts. Catalysis Today, 276, 62–77.

Lin, K., Liu, W., & Gan, J. (2009). Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways. Environmental Science & Technology, 43(10), 3860–3864.

Madivoli, E., Kareru, P., Gachanja, A., Mugo, S., Murigi, M., Kairigo, P., Kipyegon, C., Mutembei, J., & Njonge, F. (2016). Adsorption of Selected Heavy Metals on Modified Nano Cellulose. International Research Journal of Pure and Applied Chemistry, 12(3), 1–9.

Martí, V., Jubany, I., Ribas, D., Benito, J. A., & Ferrer, B. (2021). Improvement of Phosphate Adsorption Kinetics onto Ferric Hydroxide by Size Reduction. Water, 13(11).

Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179, 105151.

Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26.

Najafi, H., Farajfaed, S., Zolgharnian, S., Mosavi Mirak, S. H., Asasian-Kolur, N., & Sharifian, S. (2021). A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Safety and Environmental Protection, 147, 8–36.

Nurdila, F. A., Asri, N. S., & Suharyadi, E. (2015). Adsorpsi Logam Tembaga (Cu), Besi (Fe), Dan Nikel (Ni) Dalam Limbah Cair Buatan Menggunakan Nanopartikel Cobalt Ferrite (CoFe2O4) (Halaman 23 S.d. 27). Jurnal Fisika Indonesia UGM, 19(55).

Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water, Air, & Soil Pollution, 232(1), 4.

Penaloza, D. (2019). Modified clay for the synthesis of clay-based nanocomposites. 71, 5–11.

Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. In npj Clean Water (Vol. 4, Issue 1). Nature Research.

Radestiani, L., Destiarti, L., Rahmalia, W., & Hadari Nawawi, J. H. (2018). Pelapisan Mangan Dioksida Pada Pasir Silika Dari Kaolin Capkala Dan Aplikasinya Sebagai Adsorben Besi (Iii) Dalam Larutan. 7(4), 8–15.

Ruslan, Khairuddin, Hardi, J., & Mirzan, M. (2020). Characterization of zirconia-pillared clay with sulfate acid activation. AIP Conference Proceedings, 2243.

Seydibeyoglu, M. O., Demiroglu, S., Atagur, M., & Ocaktan, S. Y. (2017). Modification of Clay Crystal Structure with Different Alcohols. Natural Resources, 08(11), 709–715.

Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48.

Toor, M. K. (2010). Enhancing Adsorption Capacity of Bentonite for Dye Removal: Physiochemical Modification and Characterization.

Vilela, P. B., Matias, C. A., Dalalibera, A., Becegato, V. A., & Paulino, A. T. (2019). Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 7(5), 103327.

Wang, B., Bai, Z., Jiang, H., Prinsen, P., Luque, R., Zhao, S., & Xuan, J. (2019a). Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: Characteristics, modeling and application. Journal of Hazardous Materials, 364, 192–205.

Wang, B., Bai, Z., Jiang, H., Prinsen, P., Luque, R., Zhao, S., & Xuan, J. (2019b). Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: Characteristics, modeling and application. Journal of Hazardous Materials, 364, 192–205.

Wong, T. K. S., Liu, B., Narayanan, B., Ligatchev, V., & Kumar, R. (2004). Investigation of deposition temperature effect on properties of PECVD SiOCH low-k films. Thin Solid Films, 462–463, 156–160.

Yeon, J., He, X., Martini, A., & Kim, S. H. (2017). Mechanochemistry at Solid Surfaces: Polymerization of Adsorbed Molecules by Mechanical Shear at Tribological Interfaces. ACS Applied Materials & Interfaces, 9(3), 3142–3148.

Yousef, R., Qiblawey, H., & El-Naas, M. H. (2020). Adsorption as a Process for Produced Water Treatment: A Review. Processes, 8(12).

Zhang, W., Huang, W., Tan, J., Huang, D., Ma, J., & Wu, B. (2023). Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives. Chemosphere, 311, 137044.

Zhao, P., Huang, Z., Wang, P., Fu, Z., Wang, A., & Sheng, L. (2023). Two recyclable and complementary adsorbents of coal-based and bio-based humic acids: High efficient adsorption and immobilization remediation for Pb(II) contaminated water and soil. Chemosphere, 137963.



  • There are currently no refbacks.

Copyright (c) 2023 Hafni Putri Indriani Indra, Darmadi Darmadi, Adisalamun Adisalamun, Aula Chairunnisak, Nasrullah RCL

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter