Photodegradation of Liquid Waste Using ZnO/Graphene-Like Composites

Desi Heltina, Raihan Daffansyah Sinaga, Yayan Setiawan, M Iwan Fermi, Amun Amri

Abstract


Abstract: The development of industries such as textiles, dyes, plastics, medicines, cosmetics, and others is increasing along with a rise in production, leading to a high amount of liquid waste generated. Non-biodegradable, toxic, and carcinogenic liquid waste can cause environmental pollution to surrounding water. To address this challenge, biomass waste such as palm kernel shells can be used to treat liquid waste by compositing it with photocatalyst materials. Therefore, this research aimed to obtain ZnO/graphene-like composites to degrade liquid waste. ZnO/Graphene-like composites were synthesized using the solvothermal method, followed by calcination. The performance test was carried out by varying the types of methylene blue, methyl orange, and phenol waste with an initial concentration of 10 ppm, alongside the variations of ultraviolet (UV) and mercury lamps. Subsequently, characterization was carried out using SEM, XRD, FTIR, BET, UV-Vis DRS, and UV-Vis Spectrophotometer. The results showed that the percent degradation of methylene blue under UV and mercury were 83.42% and 84.93 % respectively, while methyl orange in the same conditions was 94.83% and 97.17%, respectively. Furthermore, the percent degradation of phenol in UV light and mercury were 86.03% and 89.62%, respectively. This showed that the use of mercury lamps on methyl orange was more effective than UV lamps on methylene blue and phenol.

Abstrak: Perkembangan industri seperti industri tekstil, pewarna, plastik, obat-obatan, kosmetik, dan lain-lain semakin meningkat dengan seiring bertambahnya jumlah produksi sehingga jumlah limbah yang dihasilkan juga meningkat salah satunya limbah cair. Limbah cair yang tidak dapat terurai secara biologis, beracun, dan karsinogenik ke perairan terdekat mengakibatkan pencemaran lingkungan. Disisi lain, limbah biomassa seperti cangkang sawit dapat dimanfaatkan untuk mengolah limbah cair, salah satunya mengkompositkan dengan material fotokatalis. Penelitian ini bertujuan memperoleh komposit ZnO/graphene-like untuk mendegradasi limbah cair. Komposit ZnO/Graphene-like disintesis dengan metode solvothermal dan dikalsinasi. Uji kinerja komposit ZnO/graphene-like dilakukan dengan menvariasikan jenis limbah methylene blue, methyl orange dan fenol dengan konsentrasi awal masin-masing 10 ppm serta dengan variasi lampu UV dan lampu merkuri. Komposit ZnO/Graphene-like dikarakterisasi menggunakan SEM, XRD, FTIR, BET, UV-Vis DRS dan UV-Vis Spektrofotometer. Hasil penelitian menunjukkan bahwa persen degradasi methylene blue di bawah sinar UV dan merkuri masing-masing sebesar 83,42% dan 84,93%, sedangkan methyl orange dengan sinar UV dan merkuri masing-masing sebesar 94,83% dan 97,17%. Selanjutnya, persen degradasi fenol dengan sinar UV dan merkuri masing-masing adalah 86,03% dan 89,62%. Hal ini menunjukkan bahwa penggunaan lampu merkuri pada methyl orange lebih efektif dibandingkan lampu UV pada methylene blue dan fenol.


Keywords


Photodegradation; Photocatalytic; Graphene-like; liquid waste; ZnO

Full Text:

PDF

References


Abnisa, F., Daud, W. M. A. W., Husin, W. N. W., & Sahu, J. N. (2011). Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass and Bioenergy, 35(5), 1863–1872. https://doi.org/10.1016/j.biombioe.2011.01.033

Adeel, M., Saeed, M., Khan, I., Muneer, M., & Akram, N. (2021). Synthesis and Characterization of Co-ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange. ACS Omega, 6(2), 1426–1435. https://doi.org/10.1021/acsomega.0c05092

Ahamad, T., & Ahmed, A. S. (2023). Influence of graphene oxide on the dielectric properties of biogenically synthesized ZnO nanoparticles. Hybrid Advances, 3, 100059. https://doi.org/10.1016/j.hybadv.2023.100059

Ahmad, I., Fasihullah, Q., & Vaid, F. H. M. (2006). Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 82(1), 21–27. https://doi.org/10.1016/j.jphotobiol.2005.08.004

Ahmad, R., & Kumar, R. (2010). Adsorption studies of hazardous malachite green onto treated ginger waste. Journal of Environmental Management, 91(4), 1032–1038. https://doi.org/10.1016/j.jenvman.2009.12.016

Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42(8), 1619–1640. https://doi.org/10.1021/ie0207919

Barzinjy, A. A., & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5). https://doi.org/10.1007/s42452-020-2813-1

Behzadi, S., Nonahal, B., Royaee, S. J., & Asadi, A. A. (2020). TiO2/SiO2/Fe3O4magnetic nanoparticles synthesis and application in methyl orange UV photocatalytic removal. Water Science and Technology, 82(11), 2432–2445. https://doi.org/10.2166/wst.2020.509

Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing: Process Intensification, 109, 178–189. https://doi.org/10.1016/j.cep.2016.08.016

Chen, M., Bao, C., Hu, D., Jin, X., & Huang, Q. (2019). Facile and low-cost fabrication of ZnO/biochar nanocomposites from jute fibers for efficient and stable photodegradation of methylene blue dye. Journal of Analytical and Applied Pyrolysis, 139, 319–332. https://doi.org/10.1016/j.jaap.2019.03.009

Chiou, C. H., Wu, C. Y., & Juang, R. S. (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 139(2), 322–329. https://doi.org/10.1016/j.cej.2007.08.002

Choi, K., Kang, T., & Oh, S. G. (2012). Preparation of disk shaped ZnO particles using surfactant and their PL properties. Materials Letters, 75, 240–243. https://doi.org/10.1016/j.matlet.2012.02.031

Duan, X., Sun, H., Kang, J., Wang, Y., Indrawirawan, S., & Wang, S. (2015). Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catalysis. https://doi.org/10.1021/acscatal.5b00774

Enesca, A., & Isac, L. (2020). The influence of light irradiation on the photocatalytic degradation of organic pollutants. Materials, 13(11). https://doi.org/10.3390/ma13112494

Farghali, A. A., Zaki, A. H., & Khedr, M. H. (2016). Control of Selectivity in Heterogeneous Photocatalysis by Tuning TiO2 Morphology for Water Treatment Applications. Nanomaterials and Nanotechnology, 1–6. https://doi.org/10.5772/62296

Groeneveld, I., Kanelli, M., Ariese, F., & van Bommel, M. R. (2023). Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – An overview. In Dyes and Pigments (Vol. 210). https://doi.org/10.1016/j.dyepig.2022.110999

Hamzah, N., Tokimatsu, K., & Yoshikawa, K. (2019). Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability (Switzerland), 11(4), 1–23. https://doi.org/10.3390/su11041060

He, Y., Wang, Y., Hu, J., Wang, K., Zhai, Y., Chen, Y., Duan, Y., Wang, Y., & Zhang, W. (2021). Photocatalytic property correlated with microstructural evolution of the biochar/ZnO composites. Journal of Materials Research and Technology, 11, 1308–1321. https://doi.org/10.1016/j.jmrt.2021.01.077

Ike, I. A., Karanfil, T., Cho, J., & Hur, J. (2019). Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes – A critical review. Water Research, 164. https://doi.org/10.1016/j.watres.2019.114929

Jarariya, R. (2022). A Review Based on Spinel Ferrite Nanomaterials-MgFe2O4-Synthesis of Photocatalytic Dye Degradation in Visible Light Response. Journal of Environmental Treatment Techniques, 10(2), 149–156. https://dormaj.org/index.php/jett/article/view/535

Jin, Z., Xiao, S., Dong, H., Xiao, J., Tian, R., & Chen, J. (2022). Adsorption and catalytic degradation of organic contaminants by biochar : Overlooked role of biochar’s particle size. Journal of Hazardous Materials, 422(June 2021), 126928. https://doi.org/10.1016/j.jhazmat.2021.126928

Kang, S., Li, X., Fan, J., & Chang, J. (2012). Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Industrial and Engineering Chemistry Research, 51(26), 9023–9031. https://doi.org/10.1021/ie300565d

Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 04(01), 22–26. https://doi.org/10.4236/ns.2012.41004

Kementerian Perindustrian. (2022). Informasi Industri 2022. 1–180.

Kementrian Lingkungan Hidup. (1995). Keputusan Menteri Negara Lingkungan Hidup Nomor 5 Tahun 2014. Kementerian Lingkungan Hidup, 49.

Li, Z., Liu, J., Zhang, F., & Oh, W. (2013). UV and visible light photodegradation effect on Fe – CNT / TiO 2. 36(2), 293–299.

Malik, S. N., Ghosh, P. C., Vaidya, A. N., & Mudliar, S. N. (2020). Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. Journal of Water Process Engineering, 35(February). https://doi.org/10.1016/j.jwpe.2020.101193

Mankomal, & Kaur, H. (2022). Synergistic effect of biochar impregnated with ZnO nano-flowers for effective removal of organic pollutants from wastewater. Applied Surface Science Advances, 12(October), 100339. https://doi.org/10.1016/j.apsadv.2022.100339

Mecozzi, M., & Sturchio, E. (2017). Computer assisted examination of infrared and near infrared spectra to assess structural and molecular changes in biological samples exposed to pollutants: A case of study. Journal of Imaging, 3(1). https://doi.org/10.3390/jimaging3010011

Merouani, S., & Hamdaoui, O. (2019). ScienceDirect Sonolytic ozonation for water treatment : efficiency, recent developments, and challenges. Current Opinion in Green and Sustainable Chemistry, 18, 98–108. https://doi.org/10.1016/j.cogsc.2019.03.003

Mok, W. S. L., Antal, M. J., Szabo, P., Varhegyi, G., & Zelei, B. (1992). Formation of Charcoal from Biomass in a Sealed Reactor. Industrial and Engineering Chemistry Research, 31(4), 1162–1166. https://doi.org/10.1021/ie00004a027

Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81(March 2017), 536–551. https://doi.org/10.1016/j.rser.2017.08.020

Parashar, M., & Shukla, V. K. (2020). Synthesis of Zinc Oxide Nanoparticles. Zinc-Based Nanostructures for Environmental and Agricultural Applications. https://doi.org/https://doi.org/10.1063/5.0005478

Peerakiatkhajohn, P., Butburee, T., Sul, J. H., Thaweesak, S., & Yun, J. H. (2021). Efficient and rapid photocatalytic degradation of methyl orange dye using al/zno nanoparticles. Nanomaterials, 11(4), 1–13. https://doi.org/10.3390/nano11041059

Pham, T. D., Bui, T. T., Nguyen, V. T., Van Bui, T. K., Tran, T. T., Phan, Q. C., Pham, T. D., & Hoang, T. H. (2018). Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: Characteristics, mechanisms, and application for antibiotic removal. Polymers, 10(2). https://doi.org/10.3390/polym10020220

Qu, T., Guo, W., Shen, L., Xiao, J., & Zhao, K. (2011). Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Industrial & Engineering Chemistry Research, 50. https://doi.org/dx.doi.org/10.1021/ie1025453

Rabbani, M., Shokraiyan, J., Rahimi, R., & Amrollahi, R. (2021). Comparison of photocatalytic activity of ZnO, Ag-ZnO, Cu-ZnO, Ag, Cu-ZnO and TPPS / ZnO for the degradation of methylene blue under UV and visible light irradiation. Water Science and Technology, 84(7), 1813–1825. https://doi.org/10.2166/wst.2021.360

Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111–128. https://doi.org/10.1016/j.jiec.2021.02.017

Ramos, P. G., Flores, E., Luyo, C., Sánchez, L. A., & Rodriguez, J. (2019). Fabrication of ZnO-RGO nanorods by electrospinning assisted hydrothermal method with enhanced photocatalytic activity. Materials Today Communications, 19(March), 407–412. https://doi.org/10.1016/j.mtcomm.2019.03.010

Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., & Yang, D. (2014). Preparation, characterization and photocatalytic application of TiO2 – graphene photocatalyst under visible light irradiation. Ceramics International, 1–10. https://doi.org/10.1016/j.ceramint.2014.10.072

Safni, S., Wulanda, V., Khoiriah, K., & Wellia, D. V. (2019). Degradation of Phenol By Photolysis Using N-doped TiO2 Catalyst. Jurnal Litbang Industri, 9, 51–57. https://doi.org/http://dx.doi.org/10.24960/jli.v8i2.4675.51-57

Sayem, M. A., Hossen Suvo, M. A., Syed, I. M., & Bhuiyan, M. A. (2024). Effective adsorption and visible light driven enhanced photocatalytic degradation of rhodamine B using ZnO nanoparticles immobilized on graphene oxide nanosheets. Results in Physics, 58(February), 107471. https://doi.org/10.1016/j.rinp.2024.107471

Steiner, M. G. (2017). Photocatalytic Decomposition of Phenol under Visible and UV Light Utilizing Titanium Dioxide Based Catalysts. https://scholars.unh.edu/honors/350

Stengl, V., Popelkov, D., & Vl, P. (2011). TiO2-Graphene Nanocomposite as High Performace Photocatalysts. Journal of Physical Chemistry, 115, 25209–25218.

Sucahya, T. N., Permatasari, N., & Nandiyanto, A. B. D. (2016). Review : Fotokatalis Untuk Pengolahan Limbah Cair. Jurnal Integrasi Proses, 6, 1–15.

Sudhakar, Jaiswal, K. K., Peera, G., & Ramaswamy, A. P. (2017). Green Synthesis of N-Graphene By Hydrothermal-Microwave Irradiation for Alkaline Fuel Cell Application. International Journal of Recent Scientific Research, 8(8), 19049–19053.

Tay-Agbozo, S., Street, S., & Kispert, L. D. (2018). Diffuse-Reflectance Infrared Fourier Transform and Electron Nuclear Double Resonance Study of the Carotenoid Bixin Attached to Irradiated TiO2. Journal of Physical Chemistry C, 122(33), 19075–19081. https://doi.org/10.1021/acs.jpcc.8b06240

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122

Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. In Biofuel Research Journal (Vol. 6, Issue 2, pp. 962–979). Green Wave Publishing of Canada. https://doi.org/10.18331/BRJ2019.6.2.3

Vandevivere, P. C., Bianchi, R., & Verstraete, W. (1998). Review: Treatment and reuse of wastewater from the textile wet‐processing industry: review of emerging technologies. Journal of Chemical Technology & Biotechnology, 72(4), 289–302. https://doi.org/10.1002/(sici)1097-4660(199808)72:4<289::aid-jctb905>3.3.co;2-r

Vinayagam, M., Ramachandran, S., Ramya, V., & Sivasamy, A. (2018). Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite. Journal of Environmental Chemical Engineering, 6(3), 3726–3734. https://doi.org/10.1016/j.jece.2017.06.005

Wang, J., Quan, X., Chen, S., Yu, H., & Liu, G. (2019). Enhanced catalytic ozonation by highly dispersed CeO2 on carbon nanotubes for mineralization of organic pollutants. Journal of Hazardous Materials, 368(November 2018), 621–629. https://doi.org/10.1016/j.jhazmat.2019.01.095

Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217(December 2017), 240–261. https://doi.org/10.1016/j.fuel.2017.12.054

Wijaya, K., Sugiharto, E., Fatimah, I., Sudiono, S., & Kurniaysih, D. (2006). Utilisasi TiO2-Zeolit dan Sinar UV. Jurnal Kimia Fisika, 16(3), 27–36.

Yi, S., Zou, Y., Sun, S., Dai, F., Si, Y., & Sun, G. (2019). Rechargeable Photoactive Silk-Derived Nanofibrous Membranes for Degradation of Reactive Red 195. ACS Sustainable Chemistry and Engineering, 7(1), 986–993. https://doi.org/10.1021/acssuschemeng.8b04646

Yu, S., Zhou, J., Ren, Y., Yang, Z., Zhong, M., Feng, X., Su, B., & Lei, Z. (2023). Excellent adsorptive-photocatalytic performance of zinc oxide and biomass derived N, O-contained biochar nanocomposites for dyes and antibiotic removal. Chemical Engineering Journal, 451. https://doi.org/10.1016/j.cej.2022.138959

Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects nanorods. Scientific Reports, 4–11. https://doi.org/10.1038/srep04596




DOI: http://dx.doi.org/10.22373/ekw.v10i1.21000

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Desi Heltina, Raihan Daffansyah Sinaga, Yayan Setiawan, M Iwan Fermi, Amun Amri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter