Analysis of The Effect of Aluminum Electrode Geometry on The Removal of Polyethylene Microbeads Using The Electrocoagulation Method in Greywater

Ferdy Ashari Syawal, Zulkarnaini Zulkarnaini, Shinta Indah, Fadhila Fadhila

Abstract


Abstract: The increasing use of cosmetics and personal care products containing small-sized and low-density microbeads will disrupt the aquatic environment because they are difficult to remove in wastewater treatment plants (WWTPs). Electrocoagulation (EC) is an effective technology for removing microbeads from greywater. This research aims to develop an effective cylindrical electrode geometry design in the EC process to reduce electrode passivation, as evidenced by the removal of polyethylene (PE) microbeads from greywater, reduced energy consumption, and the analysis of the EC kinetics model. Experiments were carried out on batch and continuous systems using artificial greywater with an initial concentration of 0.5 g/L. Variations made in the batch system are the geometry of the cylindrical electrode without holes (ESTB), a cylindrical electrode with holes (ESB), a cylindrical electrode with anode with holes, and a cathode with no holes (ESB-A), a cylindrical electrode with cathode, with holes and anode with no holes (ESB-K), and plate electrode (EP). The variations carried out in the continuous system were flow rates of 60, 70, 80, and 90 mL/minute using the best electrode geometry design obtained from the batch system. The best removal efficiency of PE microbeads in a batch system was 98.44% in ESB-K geometry and saved 75% energy consumption compared to EP. The best removal efficiency of PE microbeads in a continuous system was 79.76% at a flow rate of 60 mL/minute. The kinetic model of the EC reaction which corresponds to the removal process of PE microbeads is a first-order reaction. Future research should focus on optimizing the design of continuous reactors so that they can be applied to tertiary processing in domestic WWTPs and industrial WWTPs.

Abstrak: Meningkatnya penggunaan kosmetik dan produk perawatan pribadi (CPCP) yang mengandung microbeads berukuran kecil dan berkepadatan rendah akan mengganggu lingkungan perairan karena sulit disisihkan di instalasi pengolahan air limbah (IPAL). Elektrokoagulasi adalah teknologi yang efektif untuk menyisihkan microbeads dari greywater. Penelitian ini bertujuan untuk mengembangkan desain geometri elektroda silinder yang efektif pada proses elektrokoagulasi untuk mengurangi pasivasi elektroda yang dibuktikan dari penyisihan microbeads polyethylene dari greywater dan pengurangan konsumsi energi yang digunakan dan menganalisis model kinetika elektrokoagukasi. Eksperimen dilakukan pada sistem batch dan kontinu menggunakan greywater artifisial dengan konsentrasi awal 0,5 g/L. Variasi yang dilakukan pada sistem batch adalah geometri elektroda silinder tidak berlubang (ESTB), elektroda  silinder  berlubang (ESB), elektroda silinder anoda berlubang dan katoda  tidak  berlubang (ESB-A), elektroda  silinder  katoda  berlubang  dan  anoda  tidak  berlubang (ESB-K), dan elektroda pelat (EP). Variasi yang dilakukan pada sistem kontinu adalah laju alir 60, 70, 80, dan 90 mL/menit menggunakan desain geometri elektroda terbaik yang diperoleh dari sistem batch. Efisiensi penyisihan microbeads polyethylene terbaik pada sistem batch sebesar 98,44% pada geometri ESB-K dan menghemat 75% konsumsi energi dibandingkan EP. Efisiensi penyisihan microbeads polyethylene terbaik pada sistem kontinu sebesar 79,76% pada laju alir 60 mL/menit. Model kinetika reaksi elektrokoagulasi yang sesuai dengan proses penyisihan microbeads polyethylene adalah reaksi orde satu. Penelitian selanjutnya harus berfokus pada optimalisasi desain reaktor kontinu, sehingga dapat diterapkan pada pengolahan tersier di IPAL domestik maupun IPAL industri.


Keywords


greywater; polyethylene microbeads; electrocoagulation; electrode geometry; reaction kinetics

Full Text:

PDF

References


Abdul Rahman, N., Jose Jol, C., Albania Linus, A., Wan Borhan, W. W. S., Abdul Jalal, N. S., Baharuddin, N., Samsul, S. N. A., & Abdul Mutalip, N. (2023). Statistical analysis of salinity reduction in Borneo tropical brackish peat water with continuous electrocoagulation treatment system. Journal of Hazardous Materials Advances, 10(February), 100265. https://doi.org/10.1016/j.hazadv.2023.100265

Akarsu, C., & Deniz, F. (2020). Electrocoagulation/electroflotation process for removal of organics and microplastics in laundry wastewater This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination. Www. Proteomics-Journal, 1–18. https://doi.org/10.1002/clen.202000146.

Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., & Friedler, E. (2020). Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environmental Science and Pollution Research, 27(7), 7578–7587. https://doi.org/10.1007/s11356-019-07399-7

Elkhatib, D., Oyanedel-craver, V., & Carissimi, E. (2021). Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276(May), 118877. https://doi.org/10.1016/j.seppur.2021.118877

Esfandiari, A., & Mowla, D. (2021). Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Safety and Environmental Protection, 151, 341–354. https://doi.org/10.1016/j.psep.2021.05.027

Ghaitidak, D. M., & Yadav, K. D. (2013). Characteristics and treatment of greywater-a review. Environmental Science and Pollution Research, 20(5), 2795–2809. https://doi.org/10.1007/s11356-013-1533-0

Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46(6), 3060–3075. https://doi.org/10.1021/es2031505

Ibrahim, M. H., Moussa, D. T., El-Naas, M. H., & Nasser, M. S. (2020). A perforated electrode design for passivation reduction during the electrochemical treatment of produced water. Journal of Water Process Engineering, 33(July 2019), 101091. https://doi.org/10.1016/j.jwpe.2019.101091

Liu, F., Zhang, C., Li, H., Offiong, N. A. O., Bi, Y., Zhou, R., & Ren, H. (2023). A systematic review of electrocoagulation technology applied for microplastics removal in the aquatic environment. Chemical Engineering Journal, 456(December 2022), 141078. https://doi.org/10.1016/j.cej.2022.141078

Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G., & Wang, D. (2021). Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Science of the Total Environment, 786, 147508. https://doi.org/10.1016/j.scitotenv.2021.147508

Moersidik, S. S., Nugroho, R., Handayani, M., Kamilawati, & Pratama, M. A. (2020). Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes. Heliyon, 6(2), e03319. https://doi.org/10.1016/j.heliyon.2020.e03319

Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032

Perren, W., Wojtasik, A., & Cai, Q. (2018). Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 3(3), 3357–3364. https://doi.org/10.1021/acsomega.7b02037

Revel, M., Châtel, A., & Mouneyrac, C. (2019). Microplastic in aquatic environments. Ecotoxicology: New Challenges and New Approaches, 149–179. https://doi.org/10.1016/B978-1-78548-314-1.50005-5

Shen, M., Ye, S., Zeng, G., Zhang, Y., Xing, L., Tang, W., Wen, X., & Liu, S. (2020). Can microplastics pose a threat to ocean carbon sequestration? Marine Pollution Bulletin, 150(October), 110712. https://doi.org/10.1016/j.marpolbul.2019.110712

Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428(July 2021), 131161. https://doi.org/10.1016/j.cej.2021.131161

Shokri, A., & Fard, M. S. (2022). A critical review in electrocoagulation technology applied for oil removal in industrial wastewater. Chemosphere, 288(P2), 132355. https://doi.org/10.1016/j.chemosphere.2021.132355

Singh, A., & Mishra, B. K. (2023). Microbeads in personal care products: An overlooked environmental concern. Journal of Cleaner Production, 427(October), 139082. https://doi.org/10.1016/j.jclepro.2023.139082

Tsai, M., Chao, S., Chung, K., Hua, L., & Huang, C. (2023). Machine Translated by Google Ilmu Lingkungan Total Destabilisasi nanoplastik polistiren dengan muatan permukaan dan ukuran partikel yang berbeda dengan elektrokoagulasi Fe Machine Translated by Google. 872, 1–9.

Wang, Z., Sun, C., Li, F., & Chen, L. (2021). Fatigue resistance, re-usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal. Chemical Engineering Journal, 415(December 2020), 129006. https://doi.org/10.1016/j.cej.2021.129006

Xu, R., Yang, Z., Niu, Y., Xu, D., Wang, J., Han, J., & Wang, H. (2022). Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Separation and Purification Technology, 290(March), 120905. https://doi.org/10.1016/j.seppur.2022.120905

Zhang, M., Yang, J., Kang, Z., Wu, X., Tang, L., Qiang, Z., Zhang, D., & Pan, X. (2021). Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. Journal of Hazardous Materials, 404(PA), 124095. https://doi.org/10.1016/j.jhazmat.2020.124095




DOI: http://dx.doi.org/10.22373/ekw.v10i1.22307

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ferdy Ashari Syawal, Zulkarnaini Zulkarnaini, Shinta Indah, Fadhila Fadhila

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter