Chars From Hydrothermal and Hydrothermal Tandem Pyrolysis Carbonizations of Polyvinyl Chloride: Dechlorination Ability and Its Surface Characterization
Abstract
Abstract: The hydrothermal carbonization method has been applied in polyvinyl chloride (PVC) conversion. The polymer was transformed to char safely without the formation of harmful emissions. PVC's chlorine content was removed through a nucleophilic reaction by reactive subcritical water and captured by alkali ions as stable salt. The PVC bulk was dechlorinated and carbonized by subcritical water inside the hydrothermal reactor at 200 °C for 120 minutes. The solid chars obtained then were characterized by Fourier Transform Infra-Red, Scanning Electron Microscope, Energy Dispersive X-ray, and Transmission Electron Microscope. As a comparison, the chars were also pyrolyzed further to obtain the thermal char characteristics. The char products obtained by hydrothermal (hydrochar) and hydrothermal-pyrolysis (hydro-pyrochar) yielded 94.96% and 48.08%, respectively. The infrared spectra showed that both hydrochar and hydro-pyrochar consist of aliphatic carbon and hydrophilic functional groups of C=O and OH. The morphological images observed by Scanning Electron Microscope on the magnification of 3000x showed the smooth granular particle for hydrochar and the irregular rough particle for hydro-pyrochar. The chlorine contents from surface analysis by energy dispersive X-ray in hydrochar were decreased down to 23.24 mass percentage from 56.80 mass percentage in PVC, while in hydro-pyrochar, there is no chlorine content observed in the particle surfaces. The particle images investigated by Transmission Electron Microscope revealed that the particle shape of hydrochar was granular while the hydro-pyrochar was cylindrical. The particle sizes of hydrochar and hydro-pyrochar were calculated in the range of 36-180 nm and 8-40 nm, respectively.
Abstrak: Metode karbonisasi hidrotermal telah berhasil diaplikasikan dalam konversi polivinil klorida (PVC). Polimer diubah menjadi arang dengan cara yang aman tanpa menghasilkan emisi berbahaya. Klorin dalam PVC dikeluarkan melalui reaksi nukleofilik oleh air subkritis yang reaktif dan ditangkap oleh ion alkali menjadi garam yang stabil. Serbuk PVC dideklorinasi dan dikarbonisasi oleh air subkritis didalam reaktor hidrotermal pada 200 °C selama 120 menit. Arang padat yang diperoleh selanjutnya dikarakterisasi dengan Fourier Transform Infra Red, Scanning Electron Microscope, Energy Dispersive X-Ray dan Transmission Electron Microscope. Sebagian arang selanjutnya juga dipirolisis untuk mendapatkan arang dengan karakteristik arang pemanasan kering sebagai pembanding. Rendemen arang yang diperloleh secara hidrotermal (hidrochar) sebesar 94,96% dan secara hidrotermal-pirolisis (hydro-pyrochar) sebesar 48,08%. Spektra infra merah menunjukan bahwa kedua jenis arang tersebut mengandung karbon alifatik dan gugus fungsi hidrofilik C=O dan OH. Morfologi permukaan yang teramati dengan Scanning Electron Microscope pada pembesaran 3000x menunjukkan bahwa hidrochar merupakan partikel bulat yang lembut dan hidro-pirochar merupakan partikel kasar tidak beraturan. Analisis dispersi energi X-Ray menunjukkan bahwa persentase klorin pada hidrochar turun menjadi 23,24% (b/b) dari persentase awal klorin pada PVC sebesar 56,80% (b/b), sedangkan pada hidro-pirochar, tidak ada klorin yang terdeteksi pada permukaan partikel. Analisis Transmission Electron Microscope menunjukkan bahwa partikel hidrochar berbentuk bulat, sedangkan partikel hidro-pirochar berbentuk silinder. Ukuran partikel hidrochar berada pada rentang 36-180 nm sedangkan ukuran partikel hidro-pirochar berada pada rentang 8-40 nm.
Keywords
Full Text:
PDFReferences
Bidoki, S. M., & Wittlinger, R. (2010). Environmental and economical acceptance of polyvinyl chloride (PVC) coating agents. Journal of Cleaner Production, 18(3), 219–225.
Chia, J. W. F., Sawai, O., & Nunoura, T. (2020). Reaction pathway of poly (ethylene) terephthalate carbonization: Decomposition behavior based on carbonized product. Waste Management, 108, 62–69.
Conesa, J. A., Ortuño, N., & Palmer, D. (2020). Estimation of industrial emissions during pyrolysis and combustion of different wastes using laboratory data. Scientific Reports, 10(1), 6750.
Cui, X., Antonietti, M., & Yu, S. H. (2006). Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, 2(6), 756–759. https://doi.org/10.1002/smll.200600047
Dong, Z., Li, B., Shang, H., Zhang, P., Chen, S., Yang, J., Zeng, Z., Wang, J., & Deng, S. (2021). Ultramicroporous carbon granules with narrow pore size distribution for efficient CH4 separation from coal-bed gases. Aiche Journal, 67(9), e17281.
El Korhani, O., Zaouk, D., Cerneaux, S., Khoury, R., Khoury, A., & Cornu, D. (2013). Synthesis and performances of bio-sourced nanostructured carbon membranes elaborated by hydrothermal conversion of beer industry wastes. Nanoscale Research Letters, 8(1), 1–11. https://doi.org/10.1186/1556-276x-8-121
Font, R., Gálvez, A., Moltó, J., Fullana, A., & Aracil, I. (2010). Formation of polychlorinated compounds in the combustion of PVC with iron nanoparticles. Chemosphere, 78(2), 152–159. https://doi.org/10.1016/j.chemosphere.2009.09.064
Gong, J., Chen, X., & Tang, T. (2019). Recent progress in controlled carbonization of (waste) polymers. Progress in Polymer Science, 94, 1–32.
González-Arias, J., Sánchez, M. E., Cara-Jiménez, J., Baena-Moreno, F. M., & Zhang, Z. (2022). Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 1–11.
Ischia, G., & Fiori, L. (2021). Hydrothermal carbonization of organic waste and biomass: a review on process, reactor, and plant modeling. Waste and Biomass Valorization, 12, 2797–2824.
Kong, Z., Zhang, H., Zhou, T., Xie, L., Wang, B., & Jiang, X. (2024). Biomass-derived functional materials: Preparation, functionalization, and applications in adsorption and catalytic separation of carbon dioxide and other atmospheric pollutants. Separation and Purification Technology, 129099.
Kruse, A., & Zevaco, T. A. (2018). Properties of hydrochar as function of feedstock, reaction conditions and post-treatment. Energies, 11(3), 674.
Kuncaka, A., Rambe, M. R., Islam, H. P., Suratman, A., Suherman, & Muslem. (2021). Preparation and Characterization of Composite from Poly (vinyl chloride) Hydrochar and Hydrolyzate of Keratin from Chicken Feather by Hydrothermal Carbonization. Asian Journal of Chemistry, 33(10), 2483-2488
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204.
Li, W., Bai, Z., Zhang, T., Jia, Y., Hou, Y., Chen, J., Guo, Z., Kong, L., Bai, J., & Li, W. (2023). Comparative study on pyrolysis behaviors and chlorine release of pure PVC polymer and commercial PVC plastics. Fuel, 340, 127555.
Lieberzeit, P., Bekchanov, D., & Mukhamediev, M. (2022). Polyvinyl chloride modifications, properties, and applications. Polymers for Advanced Technologies, 33(6), 1809–1820.
Liu, Z., Zhang, F. S., & Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 89(2), 510–514. https://doi.org/10.1016/j.fuel.2009.08.042
McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chemical Engineering Journal, 86(3), 343–368. https://doi.org/10.1016/S1385-8947(01)00228-5
Mochizuki, Y., Bud, J., Liu, J., Takahashi, M., & Tsubouchi, N. (2021). Mercury (II) ion adsorption performance of Cl-loaded carbonaceous material prepared by chlorination of pyrolyzed rice husk char. Journal of Cleaner Production, 305, 127176.
Muslem, M., Kuncaka, A., Himah, T. N., & Roto, R. (2019). Preparation of Char-Fe3O4 Composites from Polyvinyl Chloride with Hydrothermal and Hydrothermal-Pyrolysis Carbonization Methods as Co (II) Adsorbents. Indonesian Journal of Chemistry, 19(4), 835–840.
Niu, Z., Liu, G., Yin, H., Zhou, C., Wu, D., & Tan, F. (2021). A comparative study on thermal behavior of functional groups in coals with different ranks during low temperature pyrolysis. Journal of Analytical and Applied Pyrolysis, 158, 105258.
Oberlin, A. (2021). High-resolution TEM studies of carbonization and graphitization. In Chemistry & Physics of Carbon (pp. 1–143). CRC Press.
Pan, L., Dai, F., Pei, S., Huang, J., & Liu, S. (2021). Influence of particle size and temperature on the yield and composition of products from the pyrolysis of Jimsar (China) oil shale. Journal of Analytical and Applied Pyrolysis, 157, 105211.
Poerschmann, J., Weiner, B., Woszidlo, S., Koehler, R., & Kopinke, F. D. (2015). Hydrothermal carbonization of poly(vinyl chloride). Chemosphere, 119, 682–689. https://doi.org/10.1016/j.chemosphere.2014.07.058
Sadat-Shojai, M., & Bakhshandeh, G. R. (2011). Recycling of PVC wastes. Polymer Degradation and Stability, 96(4), 404–415. https://doi.org/10.1016/j.polymdegradstab.2010.12.001
Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., & Xing, B. (2011). Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 102(10), 5757–5763. https://doi.org/10.1016/j.biortech.2011.03.038
Titirici, M. M., Thomas, A., & Antonietti, M. (2007). Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry, 31(6), 787–789. https://doi.org/10.1039/b616045j
Tu, Y., Peng, Z., Xu, P., Lin, H., Wu, X., Yang, L., & Huang, J. (2016). Characterization and Application of Magnetic Biochars from Corn Stalk by Pyrolysis and Hydrothermal Treatment. BioResources, 12(1), 1077–1089. https://doi.org/10.15376/biores.12.1.1077-1089
Yamahara, S., Viyakarn, V., Chavanich, S., Bureekul, S., Isobe, A., & Nakata, H. (2024). Open dumping site as a point source of microplastics and plastic additives: A case study in Thailand. Science of The Total Environment, 948, 174827.
Yu, S., He, J., Zhang, Z., Sun, Z., Xie, M., Xu, Y., Bie, X., Li, Q., Zhang, Y., Sevilla, M., & others. (2024). Towards negative emissions: Hydrothermal carbonization of biomass for sustainable carbon materials. Advanced Materials, 36(18), 2307412.
Zhang, L., Wang, Q., Xu, F., Wang, Z., & Zhang, G. (2022). Insights into the evolution of chemical structures in hydrochars from hydrothermal carbonization of PVC. Journal of the Energy Institute, 105, 323–333.
DOI: http://dx.doi.org/10.22373/ekw.v10i2.25852
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muslem Muslem, Hayatun Nufus, Muammar Yulian
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
P-ISSN : 2460-8912
E-ISSN : 2460-8920
ELKAWNIE
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.
View full page view stats report click here