Kinetic and Thermodynamic Characterization of the Protease from Bacillus licheniformis (ATCC 12759)

Vivi Mardina, Faridah Yusof, Md. Zahangir Alam


Abstract: In this study, the kinetic of a thermo-stable extracellular protease produced by Bacillus licheniformis (ATCC 12759) cultured in skim latex serum fortified media was investigated. The enzyme was stable up to 65 oC after incubation for 60 min at pH 8. The Lineweaver-Burk exhibited vmax (maximum rate) of 37.037 U/mg min-1 and KM (Michaelis-Menten constant) of 8.519 mg/mL. The activation energy (Ea) of casein hydrolysis and temperature quotient (Q10) were found to be 4.098 kJ/mol and 1.038 - 1.034, respectively, at a temperature ranging from 35 oC to 65 oC. The results of the residual activity test allowed estimating activation energy for irreversible inactivation of the protease (denaturation) which was approximately Ea(d) = 62.097 kJ/mol. The thermodynamic parameters for the enzyme irreversible denaturation were as follow enthalpy (59.286 ≤ΔH*d≥ 59.535 kJ/mol), Gibbs free energy (97.375 ≤ ΔG*d≥ 93.774kJ/mol), and entropy (-122.797 ≤ ΔS*d≥ -101.992 kJ/mol). These thermodynamic parameters inferred that the thermo-stable proteases could be potentially important for industrial application, for example, in the detergent industries.

Abstrak: Pada penelitian ini, kinetika protease ekstraseluler termo-stabil yang diproduksi oleh Bacillus licheniformis (ATCC 12759), yang dikultur dalam media yang diperkaya serum lateks skim diselidiki. Enzim stabil hingga 65 oC setelah diinkubasi selama 60 menit pada pH 8. Lineweaver-Burk menunjukkan vmax (laju maksimum) adalah 37.037 U/mg min-1 dan KM (konstanta Michaelis-Menten) 8.519 mg/mL. Energi aktivasi (Ea) dari hidrolisis kasein dan suhu quotient (Q10) ditemukan masing-masing sebesar 4.098 kJ/mol dan 1.038 - 1.034, pada suhu yang berkisar dari 35 oC hingga 65 oC. Hasil uji aktivitas residu memungkinkan estimasi energi aktivasi untuk inaktivasi ireversibel dari protease (denaturasi) yang kira-kira Ea (d) = 62.097 kJ/mol. Parameter termodinamika untuk denaturasi enzim ireversibel adalah sebagai berikut entalpi (59.286 ≤ΔH * d≥ 59.535 kJ / mol), energi bebas Gibbs (97.375 ≤ ΔG * d≥ 93.774kJ / mol) dan entropi (-122.797 ≤ ΔS * d≥ -101.992 kJ / mol). Parameter termodinamika pada penelitian ini menyimpulkan bahwa protease termo-stabil dapat berpotensi penting untuk aplikasi industri seperti dalam industri deterjen.


Bacillus licheniformis; kinetic; protease; skim latex serum; thermostability

Full Text:



Aguilar, J. G., de Castro, R. J. S., Sato, H.H. (2019). Alkaline protease production by Bacillus licheniformis LBA 46 in a bench reactor: effect of temperature and agitation. Brazilian Journal of Chemical Engineering, 36(2), 615 - 625.

Bhunia, B., Basak, B., Dey, A. (2012). A review on production of serine alkaline protease by Bacillus sp. Biochemical Technology, 3(4), 448-457.

Bhunia, B., Basak, B., Mandal, T., Bhattacharya, P., Dey, A. (2013). Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa). International journal of biological macromolecules, 54, 1 – 8. Doi.10.1016/j.ijbiomac.2012.11.024

Castro, R. J. S., & Sato, H. H. (2014). Protease from Aspergillus oryzae: Biochemical characterization and application as a potential biocatalyst for production of protein hydrolysates with antioxidant activities. Journal of food processing, 1 – 11.

Elumalai, P., Lim, J. M., Park, Y.J., Cho, M., Shea, P.J., Oh, B. T. (2020). Agriculture waste materials enhance protease production by Bacillus subtilis B22 in submerged fermentations under blue light-emitting diodes. Bioprocess and biosystem engineering, 43(2020), 821 – 830.

Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith, S., Priji, P., Josh, M. S., Benjaminn, S. (2013). Versatility of microbial proteases Advances in Enzyme Research, 1 (3), 39 – 51.

Kezia, D., Chandrakala, G., Prasanthi, V., Naidu, S. V., Rao, M. N. (2011). Influence of different factors on production of purified protease by Bacillus subtitis DKMNR. Biotechnology, 2(3), 73 – 85. Doi.10.4236/aer.2013.13005

Mardina, V., & Yusof, F. Chapter 15, Skim Latex Serum as an Alternative Nutrition for Microbial Growth. In: Amid, A., Sulaiman, S., Jimat, D., Azmin, N. (eds). (2018). Multifaceted Protocol in Biotechnology. Springer Nature, Singapore, 179-196. Doi.10.1007/978-981-13-2257-0_15

Mardina, V., Yusof, F., Alam, M. Z. (2015). Statistical optimization of physichochemical factors for protease production by Bacillus licheniformis on skim latex serum fortified media. Journal of Engineering Science and Technology, 6, 42 – 52.

Marin, M., Artola, A., Sanchez, A. (2018). Production of proteases from organic waste by solid state fermentation: downstream and zero waste strategies. Biotechnology, 8 (205), 1 – 16.

Martinez, R. H., Sanchez, G. G., Bergmann, C. W., Corral, O. L., Dominguez, A. R., Ochoa, S. H., Gonzalez, C. R., Prado-Barragan, L. A. (2011). Purification and characterization of a thermodynamic sable serine protease from Aspergillus fumigatus. Process biochemistry, 46, 2001–2006. Doi.10.1016/j.procbio.2011.07.013.

Mienda, B. S., Yahya, A., Galadima, I. A., Shamsir, M. S. (2014). An overview of microbial proteases for industrial applications. Pharmaceutical, Biological and Chemical Sciences, 5(1), 388–386.

Nasdeem, M, Qazi JI, Syed Q, Gulsher M. (2013). Purification and characterization of an alkaline protease from Bacillus licheniformis UV-9 for detergent formulations Songklanakarin J. of Sci. and Tech., 35 (2), 187–195.

Nigam, P.S. (2013). Review Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3, 597–611. Doi:10.3390/biom3030597

Ola, T. O. F. & Oladakun, D. O. (2012). Partial purification and characterization of a thermostable alkaline protease from isolate Lactobacillus brevis Malaysian Journal of Microbiology, 8 (1), 1 – 5. Doi.10.21161/mjm.28310

Pogaku, R., Raman, J. K., Ravikumar, G. (2012). Evaluation of activation energy and thermodynamic properties of enzyme-catalysed transesterification reactions. Advances in Chemical Engineering and Science, (2), 150 – 154.

Prajapati, V. S., Trivedi, U. B., Patel, K. C. (2014). Kinetic and thermodynamic characterization of glucoamylase from Colletotrichum sp. KCPI: Indian journal microbiology, 54(1), 87 – 93. Doi: 10.1007/s12088-013-0413-0

Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V. (1998). Molecular and biotechnologycal aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62 (2), 579 – 635. Doi.10.1128/MMBR.62.3.597-635.1998

Rathod, M. G. & Pathak, P. (2014). Wealth from waste: optimized alkaline protease production from agro-industrial residues by Bacillus alcalophilus LW8 and its biotechnological applications. Journal of Taibah University for Science, 8 (4), 307 – 314.

Samanta, S., Das, A., Halder, S. K., Jana, A., Kar, S., Mohapatra, P. K. D, Pati, B. R., Mondal, K. C. (2014). Thermoodynamic and kinetic characteristics of an α-amylase from Bacillus licheniformis SKB4. Acta Biologica Szegediensis, 58 (2), 147 – 156.

Souza, P. M., Aliakbarian, B., Filho, E. X. F., Magalhaes, P. O., Junior, A. P., Converti, A., Perego, P. (2015). Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. International Journal of Biological macromolecules, 81, 17–21.



  • There are currently no refbacks.

Copyright (c) 2020 Vivi Mardina, Faridah Yusof, Md. Zahangir Alam

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter