A Pyrolysis of 80 Mesh Spirulina platensis Residue (SPR) With Fe3O4 Catalyst

Siti Jamilatun, Lukhi Mulia Shitophyta, Heidy Oktavia Nisa, Mutia Endar Nurhidayah

Abstract


AbstractSpirulina platensis Residue (SPR) is obtained from the solid residue of Spirulina platensis extraction, which has high carbohydrate and protein content. Pyrolysis technology will convert SPR into a bio-oil, water phase, char, and gas (CO, CO2, H2, CH4) product with the potential as an environmentally friendly and sustainable fuel. This study aims to obtain data on the optimum conditions and product yield composition of SPR catalytic pyrolysis using the in-situ method.  Pyrolysis occurs in a fixed-bed reactor with SPR 50 g feed and Fe3O4 catalyst (2.5 g and 5 g) at temperature variations of 300-600 °C with an average heating rate of 14.07 °C/min. The higher the pyrolysis temperature, the more bio-oil yield, the optimum at a temperature of 500 ⁰C. The use of 2.5 and 5-gram catalysts obtained bio-oil yields of 25.01 and 17.67 %. The yield of biochar will be lower with increasing pyrolysis temperature. The optimum condition for the gas production was achieved at 300 °C, using a catalyst of 2.5 and 5 grams, the yield of gas was 23.59, and 19.74 %. Moreover, the smaller the specific gravity and the higher the bio-oils pH, the better it is as a vehicle fuel.

Abstrak: Spirulina platensis Residu (SPR) diperoleh dari residu padat ekstraksi Spirulina platensis yang memiliki kandungan karbohidrat dan protein tinggi. Teknologi pirolisis akan mengubah SPR menjadi produk bio-oil yang berpotensi sebagai bahan bakar ramah lingkungan dan berkelanjutan. Penelitian ini bertujuan untuk mendapatkan data kondisi optimum dan komposisi yield produk dari pirolisis katalitik SPR dengan metode in-situ. Pirolisis SPR akan menghasilkan produk berupa bio-oil, water phase, char dan gas (CO, CO2, H2, CH4). Pirolisis berlangsung dalam reaktor fixed-bed dengan umpan SPR 50 g serta katalis Fe3O4 (2.5 g dan  5 g)  pada variasi suhu 300-600°C dengan heating rate rata-rata 14,07 °C/min. Semakin tinggi suhu pirolisis semakin banyak yield bio-oil, optimum pada suhu 500 ⁰C. Pemakaian katalis 2,5 dan 5 gram diperoleh yield bio-oil sebanyak 25,01 dan 17,67 %. Yield biochar akan semakin rendah dengan kenaikan suhu pirolisis. Kondisi optimum produk gas dicapai pada 300 °C dengan katalis 2,5 dan 5 gram diperoleh yield gas sebesar 23,59, dan 19,74 %. Hal tersebut mengakibatkan, semakin kecil berat jenis dan semakin tinggi pH bio-oil maka semakin baik sebagai bahan bakar kendaraan.


Keywords


Spirulina platensis residue; pyrolysis; fixed-bed reactor; bio-oil; Fe3O4

Full Text:

PDF

References


Budiardi T, Utomo NBP, Santosa A. (2010). Pertumbuhan dan kandungan nutrisi Spirulina sp. pada photoperiod yang berbeda. Jurnal Akuakultur Indonesia. 9(2): 146-156.

Chutia RS, Kataki R, Bhaskar T. (2014). Characterization of liquid and solid product from pyrolysis of Pongamiaglabra deoiled cake. Bioresour Technol 165:336–342

Chen, W.H., Lin, B-J., Huang, M-Y. & Chang, J-S. (2015). Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresour. Technol., 184, 314–327.

Chaiwong K, Kiatsiriroat T. (2015). Characterizations of bio-oil and bio-char products from algae with slow and fast pyrolysis. Int J Environ Bioenergy. 10:65–76.

Debowski, M., Zielinski, M., Grala, A., Dudek, M. (2014). Algae biomass as an alternative substrate in biogas production technologies-Review. Renew. Sustain. Energy Rev. 27, 596e604

Gultom, S. O., Zamalloa, C., & Hu, B. (2014). Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella Vulgaris and Aspergillus niger. Energies, 7(7), 4417-4429. Basu, P., 2010. Biomass Characteristics. Biomass Gasification Design Handbook, 27–63.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A. and Budiman, A., (2019a), Valuable Chemicals Derived from Pyrolysis Liquid Products of Spirulina platensis residue, Indones. J. Chem., 19 (3), 703 – 711.

Jamilatun, Budhijanto, Rochmadi, A. Yuliestyan, H. Hadiyanto, and A. Budiman, (2019b), Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues, Int. J. Renew. Energy Dev., vol. 8, no. 2, pp. 133–140.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., A., (2019c), Effect of grain size, temperature, and catalyst on characteristics of pyrolysis products from Spirulina platensis residue (SPR), International Journal of Technology 10 (3), 541-550.

Jamilatun, S., Budiman, A., Anggorowati, H. Yuliestyan, A. Surya Pradana, Y. Budhijanto, and Rochmadi, (2019d), Ex-Situ Catalytic Upgrading of Spirulina platensis residue oil using silica-alumina catalyst, Int. J. Renew. Energy Res. Vol. 9, No. 4, pp. 1733−1740.

Jamilatun, S., Mufandi, I., Evitasari R.T. and Budiman, A. (2020), Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue, International Journal of Renewable Energy Research, 2020, 10(2), pp. 678-686.

Payormhorm, J., Kangvansaichol, K., Reubroycharoen, P., Kuchonthara, P., Hinchitanan, N. 2013. Pt/Al2O3-catalytic deoxygenation for the upgrading of Leucaena leucocephala-pyrolysis oil. Bioresource Technology.139.128-135.

Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D J., and Smith, A.G. 2010. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21, 227–286.

Shen, Y., and Yoshikawa, K. (2013). Recent progress in catalytic tar elimination during biomass gasification or pyrolysis—A review. Renewable and Sustainable Energy Reviews 21 (2013) 371–392.

Verma, N.H., Mehrotra, S., Amitesh Shukla, A., and Mishra, B.N. (2010). Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology. 9 (10): 1402–1411.

Yu, Z., Dai, M., Huang, M., Fang, S., Xu, J., Lin, Y., and Ma, X. (2018), Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: analytical Py-GC/MS study, Renew. Energy, 125, 465–471.

Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., and Wang, C. (2019), Pyrolysis of microalgae: A critical review, Fuel Processing Technology, 186, 53–72.

Zang, L., Bao, Z., Xia, Z., Lu, Q., and Walters, K.B. (2018), Catalytic Pyrolysis of Biomass Polymer Wastes, Catalysts, 8, 659, 1-24.




DOI: http://dx.doi.org/10.22373/ekw.v7i2.8950

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Siti Jamilatun, Lukhi Mulia Shitophyta, Heidy Oktavia Nisa, Mutia Endar Nurhidayah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

P-ISSN : 2460-8912
E-ISSN : 2460-8920

ELKAWNIE

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Elkawnie: Journal of Islamic Science and Technology in 2022. Published by Faculty of Science and Technology in cooperation with Center for Research and Community Service (LP2M), UIN Ar-Raniry Banda Aceh, Aceh, Indonesia.

View full page view stats report click here

Flag Counter