Simulation of Radiation Dose Distribution in Radiodiagnostic Facilities Using FLUKA Monte Carlo Code

Authors

  • Wildan Muhammad Zyan Physics Departement, UIN Sunan Gunung Djati, Bandung, Indonesia
  • Ridwan Ramdani Physics Departement, UIN Sunan Gunung Djati, Bandung, Indonesia
  • Moch. Nurul Subkhi Physics Departement, UIN Sunan Gunung Djati, Bandung, Indonesia

DOI:

https://doi.org/10.22373/hj0xjk86

Keywords:

Monte Carlo, FLUKA, Radiation, Dose, Validation, Radiodiagnostic

Abstract

This study investigates the application of Monte Carlo simulations using the FLUKA code to evaluate the radiation dose distribution in the radiodiagnostic facility of the Fatmawati Medical Check Up Clinic. The objective is to compare the simulation results with experimental measurements and assess the accuracy of the simulation method. The research was carried out in the Physics Modelling Laboratory, Integrated Laboratory of State Islamic University (UIN) Sunan Gunung Djati Bandung, using an HP Proliant ML350P server computer equipped with Intel® Xeon® CPU E5-2620 v2 @ 2.10GHz × 12 cores. The simulation involved modeling the radiation chamber and photon emission plane, configured to emit 9×10⁹ photons at an energy level of 60 keV. Scattered radiation doses were measured at several locations, corresponding to experimental measurement points for validation. The results showed a strong correlation and high level of accuracy between the simulation and experimental data, with a relative error of less than 1%.

Author Biography

  • Wildan Muhammad Zyan, Physics Departement, UIN Sunan Gunung Djati, Bandung, Indonesia
    Wildan Muhammad Zyan, Department of Physics, Sunan Gunung Djati State Islamic University Bandung. His research interest lies in the field of Medical Physics, particularly in the application of the FLUKA Monte Carlo method for radiation distribution simulation and analysis

References

Akhadi Mukhlis. (2000). Dasar - dasar Proteksi Radiasi. PT Rhineka Cipta.

Anjomrouz, M., Bakht, M. K., & Sadeghi, M. (2016). Feasibility study of FLUKA Monte Carlo simulation for a beta-emitting brachytherapy source: Dosimetric parameters of 142Pr glass seed. Journal of Radioanalytical and Nuclear Chemistry, 309(3), 947–953. https://doi.org/10.1007/s10967-016-4744-2

Arizal, Muh. Z., Santoso, B., Panular, D. B., & Anita, F. (2017). Analisis Radiasi Hambur di Luar Ruangan Klinik Radiologi Medical Check Up (MCU). Jurnal Ilmiah Giga, 20(2), 44. https://doi.org/10.47313/jig.v20i2.556

BAPETEN. 2013. Peraturan Kepala Bapeten No. 4 Tahun 2013 Tentang Keselamatan Radiasi dalam Pemanfaatan Tenaga Nuklir. Jakarta : Badan Pengawas Tenaga Nuklir

Battistoni, G., Boehlen, T., Cerutti, F., Chin, P. W., Esposito, L. S., Fassò, A., Ferrari, A., Lechner, A., Empl, A., Mairani, A., Mereghetti, A., Ortega, P. G., Ranft, J., Roesler, S., Sala, P. R., Vlachoudis, V., & Smirnov, G. (2015). Overview of the FLUKA code. Annals of Nuclear Energy, 82, 10–18. https://doi.org/10.1016/j.anucene.2014.11.007

Bazo, J., Rojas, J. M., Best, S., Bruna, R., Endress, E., Mendoza, P., Poma, V., & Gago, A. M. (2018). Testing FLUKA on neutron activation of Si and Ge at nuclear research reactor using gamma spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 885, 1–6. https://doi.org/10.1016/j.nima.2017.12.042

F. Baluti, “Monte Carlo Simulations of Chemical Vapour Deposition Diamond Detectors,” Thesis/Dissertations, University of Canterbury., 2009.

Ferrari, A., et al. (2003). The FLUKA code: present applications and future developments. arXiv preprint arXiv:physics/0306162. https://arxiv.org/abs/physics/0306162

Ferrari, A., Sala, P. R., Fassò, A., & Ranft, J. (2005). FLUKA : A multi-particle transport code.

FLUKA. (2019). 5th Fluka Advanced Course and Workshop . Advance Scoring.

Fuadi, N., Jusli, N., & HArmini. (2022). PEMANTAUAN DOSIS PERORANGAN MENGGUNAKAN THERMOLUMINESCENCE DOSIMETER (TLD) DI WILAYAH PAPUA DAN PAPUA BARAT TAHUN 2020-2021. Jurnal Sains Fisika, 2(1), 63–74.

Haneefa, K. A., Cyriac, T. S., Musthafa, M. M., Raman, R. G., Hridya, V. T., Siddhartha, A., & Shakir, K. K. (2014). FLUKA Monte Carlo for basic dosimetric studies of dual energy medical linear accelerator. Journal of Radiotherapy, 2014, 343979. https://doi.org/10.1155/2014/343979

Infantino, A., Cicoria, G., Lucconi, G., Pancaldi, D., Vichi, S., Zagni, F., Mostacci, D., & Marengo, M. (2017). Radiation Protection Studies for Medical Particle Accelerators using Fluka Monte Carlo Code. Radiation Protection Dosimetry, 173(1–3), 185–191. https://doi.org/10.1093/rpd/ncw302

Lee, C., Lee, S., Lee, S.-J., Song, H., Kim, D.-H., Cho, S., Jo, K., Han, Y., Chung, Y. H., & Kim, J. S. (2017). Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA. PLOS ONE, 12(10), e0186544. https://doi.org/10.1371/journal.pone.0186544

M Z Abdul Aziz, S Yani, F Haryanto, N. Kamarullah Ya Ali, S.M. Tajudin, H. Iwase, M. Musarudin (2020). Monte Carlo simulation of X-ray room shielding in diagnostic radiology using PHITS code, Journal of Radiation Research and Applied Sciences, Volume 13, Issue 1,Pages 704-713. https://doi.org/10.1080/16878507.2020.1828020

Nemati, M. J., Habibi, M., & Amrollahi, R. (2013). Analysis of concrete labyrinth shielding and radiation dose for APF plasma focus neutron source by FLUKA Monte Carlo code. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 221–226. https://doi.org/10.1007/s10967-012-2196-x

Nugraheni, F., Anisah, F., & Susetyo, G. A. (2022). Analisis Efek Radiasi Sinar-X pada Tubuh Manusia. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 19.

Ochoa-Parra, P., Schweins, L., Abbani, N., Ghesquière-Diérickx, L., Gehrke, T., Jakubek, J., Marek, L., Granja, C., Dinkel, F., Echner, G., Winter, M., Mairani, A., Harrabi, S., Jäkel, O., Debus, J., Martišíková, M., & Kelleter, L. (2024). Experimental validation of a FLUKA Monte Carlo simulation for carbon-ion radiotherapy monitoring via secondary ion tracking. Medical Physics, 51(12), 9217–9229. https://doi.org/10.1002/mp.17408

Pignol, J.-P., Cuendet, P., Brassart, N., Fares, G., Colomb, F., Diop, C. M., Sabattier, R., Hachem, A., & Prevot, G. (1998). Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations. Medical Physics, 25(6), 885–891. https://doi.org/10.1118/1.598264

Pratiwi, A. D., Indriyani, & Yunawati, I. (2021). Penerapan Proteksi Radiasi Di Instalasi Radiologi Rumah Sakit. HIGEIA Journal Of Public Health Research And Development, 5(3).

Priatam, P. P. T. D., Zambak, M. F., Suwarno, & Harahap, P. (2021). Analisa Radiasi Sinar Matahari Terhadap Panel Surya 50 WP. Rekayasa Elektrikal Dan Energi : Jurnal Teknik Elektro, 4(1).

Ramdani, R., Amalina, S. S., & Aliah, H. (2021). Studi Awal Simulasi Head Linear Accelerator (LINAC) Menggunakan Metode Monte Carlo-FLUKA. Prosiding Seminar Nasional Fisika 7.0, 209–213.

Rizani, A., Budi, W., & Anam, C. (2012). Simulasi Monte Carlo Untuk Menentukan Dosis Sinar-X 6 MV Pada Ketakhomogenan Medium Jaringan Tubuh. 15, 49–56.

Schoonwater, J. (2019). Designing a 30 MeV electron beam dump with low photoneutron production using FLUKA. Eindhoven University of Technology.

Tusnski, D. S., Szpigel, S., Giménez de Castro, C. G., MacKinnon, A. L., & Simões, P. J. A. (2019). Self-consistent modeling of gamma-ray spectra from solar flares with the Monte Carlo simulation package FLUKA. Solar Physics, 294(103). https://doi.org/10.1007/s11207-019-1499-2

Downloads

Published

2025-06-30

Issue

Section

Artikel