High-Accuracy Pneumonia Classification via Ensemble Learning on Chest X-ray Imagery

Authors

  • Rezky Rachmadany Rachman Lambung Mangkurat University http://orcid.org/0009-0002-4784-1985
  • Syamsir Dewang Physics Department, Hasanuddin University, Makassar
  • Sri Dewi Astuti Physics Department, Hasanuddin University, Makassar
  • Eko Juarlin Physics Department, Hasanuddin University, Makassar

DOI:

https://doi.org/10.22373/0y63tg53

Keywords:

Pneumonia, Chest X-Ray, Image Classification, HOG, LBP, Ensemble Learning

Abstract

Pneumonia continues to pose a substantial global health threat, necessitating rapid and precise diagnostic tools. The conventional manual assessment of Chest X-ray (CXR) images is time-intensive and susceptible to human error. This study introduces an automated machine learning approach that employs an ensemble learning strategy to achieve highly accurate pneumonia classification from CXR images. The comprehensive system operates through three primary phases: initial image pre-processing (involving grayscale conversion, resizing, and filtering for enhanced quality), robust feature extraction (utilizing the fusion of Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) descriptors), and sophisticated model training and classification. An ensemble model is trained, integrating the predictive power of Random Forest, Logistic Regression, and Extreme Gradient Boosting classifiers. Experimental validations, performed on a dedicated dataset comprising pneumonia and normal CXR images, unequivocally demonstrate that the proposed strategy achieves an impressive 97.50% overall classification accuracy, strongly supported by precision, recall, and F1-scores all at 97.50%. This superior performance, notably surpassing individual machine learning algorithms, underscores the profound efficacy of ensemble learning in delivering reliable and precise predictions for pneumonia diagnosis. Consequently, this automated methodology presents a valuable asset for medical professionals, aiding in the swift and accurate identification of pneumonia.

Author Biography

  • Rezky Rachmadany Rachman, Lambung Mangkurat University
    Fisika

References

Alqaduh, H., Alsleti, M., Alsharif, R., Qasmieh, I. A., & Alqudah, A. M. (2021). Employing texture features of chest x-ray images and machine learning in covid-19 detection and classification. Mendel, 27, 9–17. https://doi.org/10.13164/mendel.2021.1.009

Batista, A. F. de Moraes, Miraglia, J. L., Donato, T. H. R., & Filho, A. D. P. C. (2020). COVID-19 diagnosis prediction in emergency care patients: a machine learning approach. MedRxiv. https://doi.org/10.1101/2020.04.04.20052092

Johri, S., Goyal, M., Jain, S., Baranwal, M., Kumar, V., & Upadhyay, R. (2021). A novel machine learning-based analytical framework for automatic detection of COVID-19 using chest X-ray images. International Journal of Imaging Systems and Technology, 31(3), 1105–1119. https://doi.org/10.1002/ima.22613

Khan, N., Ullah, F., Hassan, M. A., Hussain, A., et al. (2020). COVID-19 classification based on Chest X-Ray images using machine learning techniques. Journal of Computer Science and Technology Studies, 2, 01–11.

Khuzani, A. Z., Heidari, M., & Shariati, S. A. (2021). COVID-Classifier: An automated machine learning model to assist in the diagnosis of COVID-19 infection in chest x-ray images. Scientific Reports, 11(1), 9887. https://doi.org/10.1038/s41598-021-88807-2

Mary, L. W., & Raj, S. A. A. (2021). Machine learning algorithms for predicting SARS-CoV-2 (COVID-19)-A comparative analysis. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), IEEE, pp. 1607–1611. https://doi.org/10.1109/ICOSEC51865.2021.9591801

Mijwil, M. M. (2021). Implementation of machine learning techniques for the classification of lung X-Ray images used to detect COVID-19 in humans. Iraqi Journal of Science, 62(6), 2099–2109. https://doi.org/10.24996/ijs.2021.62.6.35

Ohata, S. S. Y., & Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(1), 1–18. https://doi.org/10.1186/440537-019-0276-2

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. (Note: This is a foundational reference for the ML algorithms' implementation)

Rachmadany Rachman, R., Dewang, S., Ilyas, S. D. A., & Juarlin, E. (2024). Identification and classification of SARS-CoV-2 on chest CT-scan image using GLCM-based feature extraction with K-NN and naïve bayes methods. AIP Conf. Proc. 2774, 050011. https://doi.org/10.1063/5.0171488

Rachmadany Rachman, R. (2022). Identifikasi dan Klasifikasi Covid-19 pada Citra Chest CT-Scan Menggunakan Ekstraksi Fitur Berbasis GLCM dengan Metode K-NN dan Naïve Bayes (Tesis Magister yang Tidak Dipublikasikan). Universitas Hasanuddin.

Rasheed, J., Hameed, A. A., Djeddi, C., Jamil, A., & Al-Turjman, F. (2021). A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images. Interdisciplinary Sciences: Computational Life Sciences, 13, 103–117. https://doi.org/10.1007/s12539-020-00403-6

Saygılı, A. (2021). A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods. Applied Soft Computing, 105, 107323. https://doi.org/10.1016/j.asoc.2021.107323

Yadav, M., Perumal, M., & Srinivas, M. (2020). Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos, Solitons & Fractals, 139, 110050. https://doi.org/10.1016/j.chaos.2020.110050

Downloads

Published

2025-06-25

Issue

Section

Artikel