SKRINING FITOKIMIA DAN AKTIVITAS ANTIOKSIDAN EKSTRAK ETIL ASETAT CENDAWAN ENDOFIT Aspergillus sp.

Authors

  • Eka Sukmawaty Program Studi Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Alauddin Makassar
  • Hafsan Hafsan UIN Alauddin Makassar
  • Mashuri Masri UIN Alauddin Makassar
  • Inna Shintia UIN Alauddin Makassar
  • Sinar Wahyuni UIN Alauddin Makassar
  • Ulfa Nur Alfriani Amir UIN Alauddin Makassar

DOI:

https://doi.org/10.22373/biotik.v8i2.8194

Keywords:

Cendawan endofit, Aspergillus sp., antioksidan, senyawa bioaktif.

Abstract

Cendawan endofit telah diketahui menghasilkan banyak senyawa bioaktif salah satunya senyawa antioksidan. Penelitian ini bertujuan untuk mengetahui kandungan fitokimia dan  aktivitas antioksidan cendawan endofit Aspergillus sp. secara in vitro dan in vivo. Penentuan aktivitas antioksidan secara in vitro dilakukan dengan metode DPPH. Aktivitas antioksidan secara in vivo dilakukan dengan melihat kemampuannya menurunkan kadar MDA serum darah mencit yang diberi stress oksidatif. Hasil penelitian menunjukkan aktivitas antioksidan Ekstrak etil asetat Aspergillus sp. tergolong sangat kuat dengan IC50 sebesar 38,64, dan mampu menurunkan kadar MDA mencit pada konsentrasi 45 ppm/kgBB. Hasil uji fitokima menunjukkan terdapat kelompok senyawa Flavonoid, Alkaloid, Terpenoid dan Tanin yang dihasilkan dari ekstrak etil asetat cendawan endofit Aspergillus sp.

References

Aher, V. D., Wahi, A. kumar, Pawdey, A. M., & Sonawane, A. (2011). Antioxidants as immunomodulator : An expanding research avenue. International Journal of Current Pharmaceutical Research, 3(1), 8–10.

Amarowicz, R. (2007). Tannins: The new natural antioxidants? European Journal of Lipid Science and Technology, 109(6), 549–551. https://doi.org/10.1002/ejlt.200700145

Arora, D. S., & Chandra, P. (2010). Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian Journal of Microbiology, 41(3), 765–777. https://doi.org/10.1590/S1517-83822010000300029

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic content, Flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4). https://doi.org/10.3390/plants8040096

Bhattacharya S. * 1, Debnath S.1, D. P. . and S. A. . (2018). Antioxidant Activity of Fungal Endophyte Aspergillus Sydowii Isolated From International Journal of Current Advanced Research. May. https://doi.org/10.24327/ijcar.2018.11469.1986

Dalimunthe, A., Hasibuan, P. A. Z., Silalahi, J., Sinaga, S. F., & Satria, D. (2018). Antioxidant activity of alkaloid compounds from litsea cubeba lour. Oriental Journal of Chemistry, 34(2), 1149–1152. https://doi.org/10.13005/ojc/340270

De Souza, J. J., Vieira, I. J. C., Rodrigues-Filho, E., & Braz-Filho, R. (2011). Terpenoids from endophytic fungi. Molecules, 16(12), 10604–10618. https://doi.org/10.3390/molecules161210604

Fidrianny, I., Harnovi, M., & Insanu, M. (2014). Evaluation of antioxidant activities from various extracts of sweet orange peels using DPPH, FRAP assays and correlation with phenolic, flavonoid, carotenoid content. Asian Journal of Pharmaceutical and Clinical Research, 7(3), 186–190.

González-Burgos, E., & Gómez-Serranillos, M. P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Current medicinal chemistry, 19(31), 5319–5341. https://doi.org/10.2174/092986712803833335

Hartanti, D., Andestia Sinaga, R. Y., Djalil, A. D., & Wahyuningrum, R. (2018). Isolation, identification, phytochemical screening, and antibacterial activity of Aspergillus sp. MFD-01, an endophytic fungus derived from Mesua ferrea. Pharmaciana, 8(2), 338. https://doi.org/10.12928/pharmaciana.v8i2.10009

Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1

Khajehnasiri, F., Mortazavi, S. B., Allameh, A., Akhondzadeh, S., & Hashemi, H. (2013). Total antioxidant capacity and malondialdehyde in depressive rotational shift workers. Journal of Environmental and Public Health, 2013. https://doi.org/10.1155/2013/150693

Khiralla, A., Mohamed, I., Thomas, J., Mignard, B., Spina, R., Yagi, S., & Laurain-Mattar, D. (2015). A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pacific Journal of Tropical Medicine, 8(9), 701–704. https://doi.org/10.1016/j.apjtm.2015.07.032

LIPI (Lembaga Ilmu Pengetahuan Indonesia), Uji Aktivitas Antioksidan Kapang Endofit Bo.Ci.Cl.A3 asal Tanaman Kunyit (Curcuma longa Linn) dengan Variasi Nitrogen pada Media Fermentasi. Bogor: LIPI, 2016.

Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37(7), 1325–1334. https://doi.org/10.1007/s10529-015-1814-4

Malešev, D., & Kuntić, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian Chemical Society, 72(10), 921–939. https://doi.org/10.2298/JSC0710921M

Muawanah, Ahmad, A., & Natsir, H. (2016). Antioxidant activity and toxicity polysaccharide extract from red algae Eucheuma spinosum and Eucheuma cottonii. Marina Chimica Acta, 17(2), 15–23.

Mulianto, N. (2020). Malondialdehid sebagai Penanda Stres Oksidatif pada Berbagai Penyakit Kulit. Cdk-282, 47(1), 1–6.

Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/s2175-97902019000417129

Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513–523. https://doi.org/10.1016/j.fitote.2011.01.018

Wahdaningsih, S., & Untari, E. K. (2016). Pengaruh Pemberian Fraksi Metanol Kulit Buah Naga Merah (Hylocerecus polyhizus) Terhadap Kadar Malondialdehid Pada Tikus (Rattus novergicus) Wistar Yang Mengalami Stres Oksidatif. Research Article Nomor, 3(1), 45–55. http://jps.ppjpu.unlam.ac.id/

Wang, J., Yao, L. & Lu, Y. Ceriporia lacerata DMC1106, a new endophytic fungus: Isolation, identification, and optimal medium for 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone production. Biotechnol Bioproc E 18, 669–678 (2013). https://doi.org/10.1007/s12257-012-0846-z

Zaetun, S., Kusuma Dewi, L. B., & Rai Wiyadna, I. B. (2019). Profil Kadar Mda (Malondialdehide) Sebagai Penanda Kerusakan Seluler Akibat Radikal Bebas Pada Tikus Yang Diberikan Air Beroksigen. Jurnal Analis Medika Biosains (JAMBS), 5(2), 79. https://doi.org/10.32807/jambs.v5i2.109

Zhang, Y., Han, T., Ming, Q., Wu, L., Rahman, K., & Qin, L. (2012). Alkaloids produced by endophytic fungi: A review. Natural Product Communications, 7(7), 963–968. https://doi.org/10.1177/1934578x1200700742

Downloads

Published

2021-01-07

How to Cite

SKRINING FITOKIMIA DAN AKTIVITAS ANTIOKSIDAN EKSTRAK ETIL ASETAT CENDAWAN ENDOFIT Aspergillus sp. (2021). BIOTIK: Jurnal Ilmiah Biologi Teknologi Dan Kependidikan, 8(2), 218-231. https://doi.org/10.22373/biotik.v8i2.8194

Similar Articles

1-10 of 35

You may also start an advanced similarity search for this article.